Citrix® NetScaler® Routing
OSPF Command Reference

NetScaler 10.1

www.citrix.com
Table of Contents

CHAPTER 1 ZebOS Command Line Interface Environment 1
 About This Command Reference ... 1
 Command Line Interface Primer .. 1
 Definitions ... 1
 Command Line Interface Help ... 1
 Syntax Help .. 2
 Command Reference Primer .. 4
 Typographic Conventions .. 4
 Format used for Command Description 6
 command name .. 6
 Command Negation .. 6
 Variable Parameter expansion .. 7
 Other Conventions .. 7
 Show Command Tokens ... 8
 Common Command Modes .. 10
 OSPF Command Modes ... 11
 Commands Common to Multiple Protocols 12

CHAPTER 2 OSPF Commands .. 17
 area authentication .. 17
 area default-cost .. 17
 area filter-list ... 18
 area multi-area-adjacency .. 19
 area nssa .. 19
 area range ... 21
 area shortcut ... 21
 area stub ... 22
 area virtual-link .. 23
 auto-cost reference bandwidth .. 24
 capability opaque .. 25
 capability restart .. 25
 clear ip ospf process ... 26
 compatible rfc1583 ... 26
 debug ospf events .. 26
 debug ospf ifsm ... 27
 debug ospf isa ... 28
 debug ospf nfsm ... 28
 debug ospf nsms ... 29
 debug ospf packet .. 29
 debug ospf route ... 30
 default-information originate .. 31
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-metric</td>
<td>31</td>
</tr>
<tr>
<td>distance</td>
<td>32</td>
</tr>
<tr>
<td>distribute-list</td>
<td>33</td>
</tr>
<tr>
<td>domain-id</td>
<td>34</td>
</tr>
<tr>
<td>enable db-summary-opt</td>
<td>35</td>
</tr>
<tr>
<td>enable ext-ospf-multi-inst</td>
<td>35</td>
</tr>
<tr>
<td>host area</td>
<td>36</td>
</tr>
<tr>
<td>ip ospf authentication</td>
<td>36</td>
</tr>
<tr>
<td>ip ospf authentication-key</td>
<td>37</td>
</tr>
<tr>
<td>ip ospf cost</td>
<td>38</td>
</tr>
<tr>
<td>ip ospf database-filter</td>
<td>38</td>
</tr>
<tr>
<td>ip ospf dead-interval</td>
<td>39</td>
</tr>
<tr>
<td>ip ospf disable all</td>
<td>40</td>
</tr>
<tr>
<td>ip ospf hello-interval</td>
<td>40</td>
</tr>
<tr>
<td>ip ospf message-digest-key</td>
<td>41</td>
</tr>
<tr>
<td>ip ospf mtu</td>
<td>42</td>
</tr>
<tr>
<td>ip ospf mtu-ignore</td>
<td>42</td>
</tr>
<tr>
<td>ip ospf network</td>
<td>43</td>
</tr>
<tr>
<td>ip ospf priority</td>
<td>43</td>
</tr>
<tr>
<td>ip ospf resync-timeout</td>
<td>44</td>
</tr>
<tr>
<td>ip ospf retransmit-interval</td>
<td>45</td>
</tr>
<tr>
<td>ip ospf transmit-delay</td>
<td>45</td>
</tr>
<tr>
<td>max-concurrent-dd</td>
<td>46</td>
</tr>
<tr>
<td>neighbor</td>
<td>46</td>
</tr>
<tr>
<td>network area</td>
<td>47</td>
</tr>
<tr>
<td>ospf abr-type</td>
<td>48</td>
</tr>
<tr>
<td>ospf restart grace-period</td>
<td>49</td>
</tr>
<tr>
<td>ospf restart helper</td>
<td>49</td>
</tr>
<tr>
<td>ospf router-id</td>
<td>50</td>
</tr>
<tr>
<td>overflow database</td>
<td>51</td>
</tr>
<tr>
<td>overflow database external</td>
<td>52</td>
</tr>
<tr>
<td>passive-interface</td>
<td>52</td>
</tr>
<tr>
<td>redistribute</td>
<td>53</td>
</tr>
<tr>
<td>redistribute ospf</td>
<td>53</td>
</tr>
<tr>
<td>restart ospf graceful</td>
<td>54</td>
</tr>
<tr>
<td>router ospf</td>
<td>55</td>
</tr>
<tr>
<td>router-id</td>
<td>55</td>
</tr>
<tr>
<td>show debugging ospf</td>
<td>56</td>
</tr>
<tr>
<td>show ip ospf</td>
<td>56</td>
</tr>
<tr>
<td>show ip ospf multi-area-adjacencies</td>
<td>58</td>
</tr>
<tr>
<td>show ip ospf border-routers</td>
<td>59</td>
</tr>
<tr>
<td>show ip ospf database</td>
<td>59</td>
</tr>
<tr>
<td>show ip ospf database asbr-summary</td>
<td>61</td>
</tr>
<tr>
<td>show ip ospf database external</td>
<td>62</td>
</tr>
<tr>
<td>show ip ospf database network</td>
<td>63</td>
</tr>
<tr>
<td>show ip ospf database nssa-external</td>
<td>65</td>
</tr>
<tr>
<td>show ip ospf database opaque-area</td>
<td>66</td>
</tr>
</tbody>
</table>
CHAPTER 3 OSPFv3 Commands ... 83
abr-type ... 83
area default-cost .. 83
area range ... 84
area stub ... 85
area virtual-link .. 85
auto-cost reference bandwidth 86
capability restart ... 87
capability te ... 88
clear ipv6 ospf process 88
debug ipv6 ospf events 89
debug ipv6 ospf ifsm .. 89
debug ipv6 ospf lsa ... 90
debug ipv6 ospf nfsm 90
debug ipv6 ospf nsm .. 90
debug ipv6 ospf packet 91
debug ipv6 ospf route 91
default-metric ... 92
enable db-summary-opt 92
ipv6 ospf cost ... 93
ipv6 ospf dead-interval 93
ipv6 ospf display route single-line 94
ipv6 ospf hello-interval 94
ipv6 ospf neighbor ... 95
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 ospf priority</td>
<td>96</td>
</tr>
<tr>
<td>ipv6 ospf restart grace-period</td>
<td>97</td>
</tr>
<tr>
<td>ipv6 ospf restart helper</td>
<td>97</td>
</tr>
<tr>
<td>ipv6 ospf retransmit-interval</td>
<td>98</td>
</tr>
<tr>
<td>ipv6 ospf transmit-delay</td>
<td>99</td>
</tr>
<tr>
<td>ipv6 router ospf</td>
<td>100</td>
</tr>
<tr>
<td>ipv6 te-metric</td>
<td>100</td>
</tr>
<tr>
<td>max-concurrent-dd</td>
<td>101</td>
</tr>
<tr>
<td>passive-interface</td>
<td>101</td>
</tr>
<tr>
<td>redistribute</td>
<td>102</td>
</tr>
<tr>
<td>restart ipv6 ospf graceful</td>
<td>103</td>
</tr>
<tr>
<td>router-id</td>
<td>103</td>
</tr>
<tr>
<td>router ipv6 ospf</td>
<td>104</td>
</tr>
<tr>
<td>show debugging ipv6 ospf</td>
<td>105</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>105</td>
</tr>
<tr>
<td>show ipv6 ospf database</td>
<td>105</td>
</tr>
<tr>
<td>show ipv6 ospf interface</td>
<td>107</td>
</tr>
<tr>
<td>show ipv6 ospf neighbor</td>
<td>108</td>
</tr>
<tr>
<td>show ipv6 ospf route</td>
<td>108</td>
</tr>
<tr>
<td>show ipv6 ospf topology</td>
<td>110</td>
</tr>
<tr>
<td>show ipv6 ospf virtual-links</td>
<td>110</td>
</tr>
<tr>
<td>timers spf</td>
<td>111</td>
</tr>
<tr>
<td>timers spf exp</td>
<td>111</td>
</tr>
<tr>
<td>undebug ipv6 ospf event</td>
<td>112</td>
</tr>
<tr>
<td>undebug ipv6 ospf ifsm</td>
<td>112</td>
</tr>
<tr>
<td>undebug ipv6 ospf lsa</td>
<td>113</td>
</tr>
<tr>
<td>undebug ipv6 ospf nfsm</td>
<td>113</td>
</tr>
<tr>
<td>undebug ipv6 ospf nsm</td>
<td>114</td>
</tr>
<tr>
<td>undebug ipv6 ospf packet</td>
<td>114</td>
</tr>
<tr>
<td>undebug ipv6 ospf route</td>
<td>114</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>105</td>
</tr>
<tr>
<td>show ipv6 ospf database</td>
<td>105</td>
</tr>
<tr>
<td>show ipv6 ospf interface</td>
<td>107</td>
</tr>
<tr>
<td>show ipv6 ospf virtual-links</td>
<td>108</td>
</tr>
<tr>
<td>show ipv6 ospf neighbor</td>
<td>108</td>
</tr>
<tr>
<td>show ipv6 ospf database</td>
<td>108</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>105</td>
</tr>
<tr>
<td>router ospf vrf</td>
<td>117</td>
</tr>
<tr>
<td>show ip vrf</td>
<td>117</td>
</tr>
<tr>
<td>show ip vrf NAME</td>
<td>118</td>
</tr>
<tr>
<td>CHAPTER 4 OSPF VPN Commands</td>
<td>117</td>
</tr>
<tr>
<td>capability cspf</td>
<td>119</td>
</tr>
<tr>
<td>capability te</td>
<td>119</td>
</tr>
<tr>
<td>cspf default-retry-interval</td>
<td>120</td>
</tr>
<tr>
<td>cspf tie-break</td>
<td>120</td>
</tr>
<tr>
<td>debug cspf events</td>
<td>121</td>
</tr>
<tr>
<td>debug cspf hexdump</td>
<td>122</td>
</tr>
<tr>
<td>show cspf ipv6 lsp</td>
<td>122</td>
</tr>
<tr>
<td>show cspf lsp</td>
<td>123</td>
</tr>
<tr>
<td>show cspf lsp</td>
<td>123</td>
</tr>
<tr>
<td>show debugging cspf</td>
<td>124</td>
</tr>
<tr>
<td>show ip ospf te-database</td>
<td>124</td>
</tr>
<tr>
<td>show ipv6 ospf te-database</td>
<td>125</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>undebug cspf events</td>
<td>127</td>
</tr>
<tr>
<td>undebug cspf hexdump</td>
<td>127</td>
</tr>
<tr>
<td>Index</td>
<td>Index - 1</td>
</tr>
</tbody>
</table>
CHAPTER 1 ZebOS Command Line Interface Environment

About This Command Reference

Network administrators and application developers who install and configure ZebOS® IP routing software should use this Command Reference.

This Reference contains the following information:

- An overview of the ZebOS Command Line Interface.
- The complete command reference for ZebOS Open Shortest Path First (OSPF) protocol.

Users can use a telnet session to log onto the OSPF daemon and use the CLI described in this Command Reference to issue commands to configure and to get information about the OSPF daemon.

Command Line Interface Primer

The ZebOS® Command Line Interface (CLI) is a text-based facility conforming to industry standards. Many of the commands may be used in scripts to automate configuration tasks. Each CLI command is usually associated with a specific function or a common function performing a specific task. Multiple users can telnet and issue commands using the Exec mode and the Privileged Exec mode. For ZebOS versions prior to 7.4, only one user is allowed to use the Configure mode at a time. For ZebOS versions 7.4 and later, multiple users are allowed to simultaneously use the Configure mode.

The IMI (Integrated Management Interface) Shell gives users and administrators the ability to issue commands to several daemons from a single telnet session.

Definitions

- **token**
 A non-character, non-numeric symbol: {}, (), <>, |, ?, >, , =

- **parameter**
 An UPPERCASE term for which the user substitutes input.

- **keyword**
 A lowercase term that the user types exactly as shown.

Command Line Interface Help

The ZebOS CLI contains a text-based help facility. Access this help by typing in a full or partial command string then typing a question mark “?” The ZebOS CLI displays the command keywords or parameters along with a short description.

For example, at the CLI command prompt, type

```
ZebOS> show ?
```

(the CLI does not display the question mark).

The CLI displays this keyword list with short descriptions for each keyword:

```
ZebOS# show
debugging       Debugging functions (see also 'undebug')
history         Display the session command history
ip              IP information
```
ZebOS Command Line Interface Environment

- memory: Memory statistics
- route-map: route-map information
- running-config: running configuration
- startup-config: Contents of startup configuration
- version: Displays ZebOS version

If the ? is typed in the middle of a keyword, ZebOS CLI displays help for that keyword only.

```
ZebOS> show de? (the CLI does not display the question mark).
debugging Debugging functions (see also 'undebug')
```

If the ? is typed in the middle of a keyword but the incomplete keyword matches several other keywords, ZebOS displays help for all matching keywords.

```
ZebOS> show i? (the CLI does not display the question mark).
interface Interface status and configuration
ip IP information
isis ISIS information
```

Syntax Help

Command Completion

The ZebOS CLI can complete the spelling of a command or a parameter. Begin typing the command or parameter and then press TAB. For example, at the CLI command prompt type `sh`:

```
ZebOS> sh
```

Press TAB. The CLI shows:

```
ZebOS> show
```

If the command or parameter partial spelling is ambiguous, the ZebOS CLI displays the choices that match the abbreviation. Type `show i` and press TAB. The CLI shows:

```
ZebOS> show i
interface ip isis
```

The CLI displays the `interface` and `ip` keywords. Type `n` to select `interface` and press TAB. The CLI shows:

```
ZebOS> show in
ZebOS> show interface
```

Type `?` and the CLI displays the list of parameters for the `show interface` command.

```
ZebOS> show interface
   IFNAME Interface name
   | Output modifiers
   > Output redirection
<cr>
```

The CLI displays the only parameter associated with this command, the `IFNAME` parameter. For more information on the output modifiers and output redirection, see the `Special Tokens for Show Commands` section.

Command Abbreviations

The ZebOS CLI accepts abbreviations for commands. For example,

```
sh in eth0
```

is an abbreviation for the `show interface` command.
Command Line Errors

Any unknown spelling variation causes the command line parser to display in response to the ?, the error "Unrecognized command". The parser re-displays the command as last entered. When the user presses the enter key after typing an invalid command, the parser displays:

```
ZebOS(config)#router ospf here
   ^
% Invalid input detected at '^' marker.
```

where the ^ points to the first character in error in the command.

If a command is incomplete it displays this message:

```
ZebOS> show
% Incomplete command.
```

Some commands are too long for the display line and can wrap in mid-parameter or mid-keyword:

```
area 10.10.0.18 virtual-link 10.10.0.19 authentication-key 57393
```
Command Reference Primer

Typographic Conventions

The following table lists typographic conventions for command syntax descriptions.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monospaced font</td>
<td>Command</td>
<td>Represents command strings entered on a command line and sample source code.</td>
<td>show ip ospf</td>
</tr>
<tr>
<td>Proportional font</td>
<td>Description</td>
<td>Gives specific details about a parameter.</td>
<td>advertise Advertises this range</td>
</tr>
<tr>
<td>UPPERCASE</td>
<td>Variable parameter</td>
<td>Indicates user input. Values to be entered according to the descriptions that follow. Each uppercased token expands into one or more other tokens.</td>
<td>area AREAID range ADDRESS</td>
</tr>
<tr>
<td>lowercase</td>
<td>Keyword parameter</td>
<td>Indicates keywords. Values to be entered exactly as shown in the command description.</td>
<td>show ip ospf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical bar</td>
<td>Delimits choices; One to be selected from the list. Not to be entered as part of the command.</td>
</tr>
<tr>
<td>(</td>
<td>Parentheses</td>
<td>Encloses optional parameters. None or only one to be chosen. Not to be entered as part of the command.</td>
<td>(A.B.C.D</td>
</tr>
<tr>
<td>{ }</td>
<td>Braces</td>
<td>Encloses optional parameters. None, one or more than one to be chosen. Not to be entered as part of the command.</td>
<td>{priority <0-255></td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets</td>
<td>Encloses optional parameters. Choose one. Not to be entered as part of the command.</td>
<td>[parm2</td>
</tr>
<tr>
<td>?</td>
<td>Question mark</td>
<td>Used with the square brackets to limit the immediately following token to one occurrence. Not to be entered as part of the command.</td>
<td>[parm1</td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets</td>
<td>Enclose a numeric range, endpoints inclusive. Not to be entered as part of the command.</td>
<td><0-65535></td>
</tr>
<tr>
<td>=</td>
<td>Equal sign</td>
<td>Separates the variable from explanatory text. Not to be entered as part of the command.</td>
<td>PROCESSID = <0-65535></td>
</tr>
<tr>
<td>.</td>
<td>Dot (period)</td>
<td>Allows the repetition of the element that immediately follows it multiple times. Not to be entered as part of the command.</td>
<td>.AA:NN can be expanded to: 1:01 1:02 1:03.</td>
</tr>
<tr>
<td>A.B.C.D</td>
<td>IP address</td>
<td>An IPv4-style address.</td>
<td>10.0.11.123</td>
</tr>
<tr>
<td>X:X::X:X</td>
<td>IP address</td>
<td>An IPv6-style address.</td>
<td>3ffe:506::1, where the :: represents all 0s for those address components not explicitly given.</td>
</tr>
<tr>
<td>LINE</td>
<td>End-of-line input token</td>
<td>Indicates user input of any string, including spaces. No other parameters may be entered after input for this token.</td>
<td>string of words</td>
</tr>
<tr>
<td>Convention</td>
<td>Name</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>WORD</td>
<td>Single token</td>
<td>Indicates user input of any contiguous string (excluding spaces).</td>
<td><code>singlewordnospaces</code></td>
</tr>
<tr>
<td>IFNAME</td>
<td>Single token</td>
<td>Indicates the name of an interface.</td>
<td><code>eth0</code></td>
</tr>
</tbody>
</table>
Format used for Command Description

command name
Description of the command. What the command does and when should it be used.

Command Syntax
sample command name mandatory-parameters (OPTIONAL-PARAMETERS)

Default
The status of the command before it is executed. Is it enabled or disabled by default.

Command Mode
Name of the command mode in which this command is to be used. Such as, Exec, Privilege Exec, Configure mode and so on.

Usage
This section is optional. It describes the usage of a specific command and the interactions between parameters. It also includes appropriate sample outputs for show commands.

Example
Used if needed to show the complexities of the command syntax.

Related Commands
This section is optional and lists those commands that are of immediate importance.

Equivalent Commands
This section is optional and lists commands that accomplish the same function.

Validation Commands
This section is optional and lists commands that can be used to validate the effects of other commands.

Command Negation
Some commands can be negated by using a no keyword.
In the following area virtual-link command, the no keyword is optional. This means that the entire syntax can be negated. Depending on the command or the parameters, command negation can mean the disabling of one entire feature for the router or the disabling of that feature for a specific ID, interface or address.

(no) area AREAADDRESSID virtual-link ROUTERID (AUTHENTICATE|MSGD|INTERVAL)

In the following example, negation is for the base command only. The negated form does not take any parameter.

default-metric <1-16777214>

no default-metric
Variable Parameter expansion

For the `area virtual-link` command,

```
(no) area AREAADDRESSID virtual-link ROUTERID (AUTHENTICATE|MSGD|INTERVAL)
```

the `AREAADDRESSID` parameter is replaced by either an IP address or a number in the given range:

```
AREAADDRESSID=A.B.C.D|<0-4294967295>
```

and `ROUTERID` by an IP address. The minimum command then is:

```
area 10.10.0.11 virtual-link 10.10.0.12
```

The parameters in the string `(AUTHENTICATE|MSGD|INTERVAL)` are optional, and only one may be chosen. Each one can be replaced by more keywords and parameters. One of these parameters, MD5, is replaced by the following string:

```
MD5= [message-digest-key <1-255> md5 MD5_KEY]
```

with `MD5_KEY` replaced by a 1-16 character string.

Other Conventions

This warning symbol indicates that you must be cautious as you might risk losing data or damaging your hardware.
Show Command Tokens

Two tokens modify the output of the show commands. Use the ? after typing the command to display:

ZebOS# show users
 | Output modifiers
 > Output redirection

Note: These tokens are available only through the IMI shell; they are unavailable to users who telnet to daemons.

Output Modifiers

Type the | (vertical bar) to use Output modifiers.

- begin Begin with the line that matches
- exclude Exclude lines that match
- include Include lines that match
- redirect Redirect output

Begin

The begin parameter displays the output beginning with the first line containing a token matching the input string (everything typed after the begin token).

ZebOS# show run | begin eth1

...skipping
interface eth1
 ipv6 address fe80::204:75ff:fee6:5393/64
!
interface eth2
 ipv6 address fe80::20d:56ff:fe96:725a/64
!
line con 0
 login
line vty 0 4
 login
!
end

Exclude

The exclude parameter excludes all lines of output that contain the input string. In the following output all lines containing the word “include” are excluded:

ZebOS# show interface eth1 | exclude input
Interface eth1
 Scope: both
 Hardware is Ethernet, address is 0004.75e6.5393
 index 3 metric 1 mtu 1500 <UP,BROADCAST,RUNNING,MULTICAST>
 VRF Binding: Not bound
 Label switching is disabled
 No Virtual Circuit configured
 Administrative Group(s): None
 DSTE Bandwidth Constraint Mode is MAM
 inet6 fe80::204:75ff:fee6:5393/64
output packets 4438, bytes 394940, dropped 0
output errors 0, aborted 0, carrier 0, fifo 0, heartbeat 0, window 0
collisions 0

Include
The include parameter includes only those lines of output that contain the input string. In the output below, all lines containing the word “input” are included:

ZebOS# show interface eth1 | include input
input packets 8043452, bytes 2147483647, dropped 0, multicast packets 0
input errors 0, length 0, overrun 0, CRC 0, frame 0, fifo 1, missed 0

Redirect
The redirect parameter puts the lines of output into the indicated file.

ZebOS# show history | redirect /var/frame.txt

Output Redirection
The output redirection token > allows the user to specify a target file for the lines of output.

ZebOS# show history > /var/frame.txt
Common Command Modes

The commands available for each protocol are separated into several modes (nodes) arranged in a hierarchy; The Exec mode is the lowest. Each mode has its own special commands; in some modes, commands from a lower level are available.

Note: Multiple users can telnet and issue commands using the Exec mode and the Privileged Exec mode. For ZebOS versions earlier than 7.4, only one user is allowed to use the Configure mode at a time. For ZebOS versions 7.4 and later, multiple users are allowed to simultaneously use the Configure mode.

Exec Mode Also called the View mode, is the base mode from where users can perform basic commands like show, exit, quit, help, list, and enable. All ZebOS daemons have this mode.

Privileged Exec Mode Also called the Enable mode, allows users to run debug, write (for saving and viewing the configuration) and show commands.

Configure Mode Also called Configure Terminal mode, this mode serves as a gateway into the Interface, Router, Line, Route Map, Key Chain and Address Family modes.

Interface Mode Is used to configure protocol-specific settings for a particular interface. Any attribute configured in this mode overrides an attribute configured in the Router mode.

Line Mode Makes the access-class commands available.

This diagram displays the common command mode tree.
OSPF Command Modes

Router Sometimes referred to as `configure router` mode, this mode is available for the MPLS, BGP, OSPF, and RIP protocols only and makes available router and routing commands.

Line This mode is used for access-class commands. It is available for the BGP, OSPF, and RIP protocols only.

Route-map This mode is used to set route metric, route-length and cost data. It is available for the BGP, OSPF, and RIP protocols only.

The following diagram shows the complete OSPF daemon command mode tree. For information about Exec, Privileged Exec, Configure and Interface modes please refer to the ZebOS daemon command modes mentioned earlier in this chapter.

Following is a description of the parameters used in the above mentioned commands.

```
PROCESSID = < 0-65535 >
TAG = WORD (deny|permit)<1-65535>
    deny Route-map denies set operations
    permit Route-map permits set operations
<1-65535> Sequence to insert to / delete from existing route-map entry.
```
Commands Common to Multiple Protocols

See the *ZebOS NSM Command Reference* for information about using these commands in multiple protocol daemons.

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Use this command to</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-class</td>
<td>filter a connection based on an IP access list, for IPv4 networks</td>
</tr>
<tr>
<td>access-list</td>
<td>configure an access-list for filtering packets.</td>
</tr>
<tr>
<td>access-list extended</td>
<td>configure an extended access-list for filtering packets.</td>
</tr>
<tr>
<td>access-list standard</td>
<td>configure a standard access-list for filtering packets.</td>
</tr>
<tr>
<td>banner</td>
<td>toggle the displaying of the banner text.</td>
</tr>
<tr>
<td>clear ip prefix-list</td>
<td>clear the IP prefix-list.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>enter the Configure Terminal mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>copy the current running configuration to the startup configuration file.</td>
</tr>
<tr>
<td>description</td>
<td>provide interface-specific information.</td>
</tr>
<tr>
<td>disable</td>
<td>exit Privileged Exec mode.</td>
</tr>
<tr>
<td>enable</td>
<td>enter the Privileged Exec mode.</td>
</tr>
<tr>
<td>enable password</td>
<td>change the password for the enable command.</td>
</tr>
<tr>
<td>end</td>
<td>leave the current mode.</td>
</tr>
<tr>
<td>exec-timeout</td>
<td>set command interpreter wait interval.</td>
</tr>
<tr>
<td>exit</td>
<td>leave the current mode, or logout of the session.</td>
</tr>
<tr>
<td>help</td>
<td>display online text assistance.</td>
</tr>
<tr>
<td>hostname</td>
<td>set or change network server name.</td>
</tr>
<tr>
<td>ip prefix-list</td>
<td>create an entry for a prefix list.</td>
</tr>
<tr>
<td>ipv6 access-class</td>
<td>filter connection based on an IP access list for IPv6 networks.</td>
</tr>
<tr>
<td>ipv6 access-list</td>
<td>configure an access-list for filtering frames.</td>
</tr>
<tr>
<td>ipv6 prefix-list</td>
<td>create an entry for an IPv6 prefix list.</td>
</tr>
<tr>
<td>line vty</td>
<td>enter Line mode.</td>
</tr>
<tr>
<td>list</td>
<td>list all commands for a mode.</td>
</tr>
<tr>
<td>log file</td>
<td>specify the file that collects logging information.</td>
</tr>
<tr>
<td>log record-priority</td>
<td>specify the logging of the priority of a message.</td>
</tr>
<tr>
<td>log stdout</td>
<td>begin logging information to the standard output.</td>
</tr>
<tr>
<td>Command Name</td>
<td>Use this command to</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>log syslog</td>
<td>begin logging information to the system log.</td>
</tr>
<tr>
<td>log trap</td>
<td>limit logging to a specified level or type.</td>
</tr>
<tr>
<td>login</td>
<td>set a password prompt and enable password checking.</td>
</tr>
<tr>
<td>match as-path</td>
<td>match an autonomous system path access list.</td>
</tr>
<tr>
<td>match community</td>
<td>specify the community to be matched.</td>
</tr>
<tr>
<td>match extcommunity</td>
<td>specify the extended community to be matched.</td>
</tr>
<tr>
<td>match interface</td>
<td>define the interface match criterion.</td>
</tr>
<tr>
<td>match ip address</td>
<td>specify the match address of route.</td>
</tr>
<tr>
<td>match ip address prefix-list</td>
<td>specify to match entries of prefix-lists.</td>
</tr>
<tr>
<td>match ip next-hop</td>
<td>specify a next-hop address to be matched in a route-map.</td>
</tr>
<tr>
<td>match ip next-hop prefix-list</td>
<td>specify the next-hop IP address match criterion, using the prefix-list.</td>
</tr>
<tr>
<td>match ipv6 address</td>
<td>specify the match IPv6 address of route.</td>
</tr>
<tr>
<td>match ipv6 address prefix-list</td>
<td>match entries of IPv6 prefix-lists.</td>
</tr>
<tr>
<td>match ipv6 next-hop</td>
<td>specify a next-hop IPv6 address to be matched by the route-map.</td>
</tr>
<tr>
<td>match metric</td>
<td>match a metric of a route.</td>
</tr>
<tr>
<td>match origin</td>
<td>match origin code.</td>
</tr>
<tr>
<td>match route-type</td>
<td>match specified external route type.</td>
</tr>
<tr>
<td>match tag</td>
<td>match the specified tag value.</td>
</tr>
<tr>
<td>password</td>
<td>specify a network password.</td>
</tr>
<tr>
<td>quit</td>
<td>leave the current mode.</td>
</tr>
<tr>
<td>route-map</td>
<td>enter the route-map mode and to permit or deny match/set operations.</td>
</tr>
<tr>
<td>service advanced-vty</td>
<td>set the VTY session to Privileged Exec mode instead of the Exec mode (which is the default).</td>
</tr>
<tr>
<td>service password-encryption</td>
<td>specify encryption of passwords.</td>
</tr>
<tr>
<td>service terminal-length</td>
<td>set the terminal length for VTY sessions.</td>
</tr>
<tr>
<td>set aggregator</td>
<td>set the AS number for the route map and router ID.</td>
</tr>
<tr>
<td>set as-path</td>
<td>modify an autonomous system path for a route.</td>
</tr>
<tr>
<td>set atomic-aggregate</td>
<td>set an atomic aggregate attribute.</td>
</tr>
<tr>
<td>set comm-list delete</td>
<td>delete matching communities from inbound or outbound updates.</td>
</tr>
<tr>
<td>set community</td>
<td>set the communities attribute.</td>
</tr>
<tr>
<td>Command Name</td>
<td>Use this command to</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>set community-additive</td>
<td>add a community to the already existing communities.</td>
</tr>
<tr>
<td>set dampening</td>
<td>set route-flap dampening parameters.</td>
</tr>
<tr>
<td>set extcommunity</td>
<td>set an extended community attribute.</td>
</tr>
<tr>
<td>set ip next-hop</td>
<td>set the specified next-hop value.</td>
</tr>
<tr>
<td>set ipv6 next-hop</td>
<td>set a next hop-address.</td>
</tr>
<tr>
<td>set metric</td>
<td>set a metric value for a route.</td>
</tr>
<tr>
<td>set metric-type</td>
<td>set the metric type for the destination routing protocol.</td>
</tr>
<tr>
<td>set next-hop</td>
<td>specify the next-hop address.</td>
</tr>
<tr>
<td>set origin</td>
<td>set the origin code.</td>
</tr>
<tr>
<td>set originator-id</td>
<td>set the originator ID attribute.</td>
</tr>
<tr>
<td>set tag</td>
<td>set specified tag value.</td>
</tr>
<tr>
<td>set vpnv4 next-hop</td>
<td>set a VPNv4 next-hop address.</td>
</tr>
<tr>
<td>set weight</td>
<td>set weights for the routing table.</td>
</tr>
<tr>
<td>show access-list</td>
<td>display the list of IP access lists.</td>
</tr>
<tr>
<td>show cli</td>
<td>display the CLI tree of the current mode.</td>
</tr>
<tr>
<td>show list</td>
<td>display a list of all commands in the current mode.</td>
</tr>
<tr>
<td>show history</td>
<td>display all commands used in a session.</td>
</tr>
<tr>
<td>show ip prefix-list</td>
<td>display the prefix list entries.</td>
</tr>
<tr>
<td>show memory all</td>
<td>display the memory reports for all protocols.</td>
</tr>
<tr>
<td>show memory free</td>
<td>display the statistics of free memory for all protocol.</td>
</tr>
<tr>
<td>show memory summary</td>
<td>display the summary of memory subsystem statistics.</td>
</tr>
<tr>
<td>show route-map</td>
<td>display user readable route-map information.</td>
</tr>
<tr>
<td>show running-config</td>
<td>display the current configuration.</td>
</tr>
<tr>
<td>show startup-config</td>
<td>display the startup configuration (from storage).</td>
</tr>
<tr>
<td>show version</td>
<td>display the current ZebOS version.</td>
</tr>
<tr>
<td>terminal length</td>
<td>set the number of lines in a terminal display.</td>
</tr>
<tr>
<td>terminal monitor</td>
<td>display debugging on a monitor.</td>
</tr>
<tr>
<td>who</td>
<td>display other VTY connections.</td>
</tr>
<tr>
<td>write file and write memory</td>
<td>write the current configuration file.</td>
</tr>
<tr>
<td>write terminal</td>
<td>display current configurations to the VTY terminal.</td>
</tr>
</tbody>
</table>
This chapter provides an alphabetized reference for each of the OSPF Commands.

area authentication

Use this command to enable authentication for an OSPF area.

Use the **no** parameter to remove the authentication specification for an area.

Command Syntax

```plaintext
area AREAID authentication (message-digest)
no area AREAID authentication

AREAID = A.B.C.D | <0-4294967295>

A.B.C.D   OSPF Area ID in IPv4 address format.
<0-4294967295> OSPF Area ID as 4 octets unsigned integer value.
message-digest Enables MD5 authentication on the area specified by AREAID.
```

Default

Null authentication

Command Mode

Router mode

Usage

Specifying the area authentication sets the authentication to **Type 1 authentication** or the **Simple Text password** authentication (details in RFC 2328). Setting up a **Type 1 authentication** configures a 64-bit field for that particular network. All packets sent on this network must have this configured value in their OSPF header. This allows only routers that have the same passwords to join the routing domain. Give all routers that are to communicate with each other through OSPF the same authentication password.

Use the `ip ospf authentication-key` command to specify a **Simple Text password**.

Use the `ip ospf message-digest-key` command to specify **MD5 password**.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# area 1 authentication
```

Related Commands

`ip ospf authentication-key`, `ip ospf message-digest-key`

area default-cost

Use this command to specify a cost for the default summary route sent into a stub or NSSA area.
Use the no form of this command to remove the assigned default-route cost.

Command Syntax

```
area AREAILD default-cost <0-16777215>
no area AREAILD default-cost

AREAILD = A.B.C.D|<0-4294967295>
  A.B.C.D  OSPF Area ID in IPv4 address format.
  <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

default-cost  Indicates the cost for the default summary route used for a stub or NSSA area.
  Default  value of cost is 1.
```

Command Mode

Router mode

Usage

The default-cost option provides the metric for the summary default route, generated by the area border router, into the NSSA or stub area. Use this option only on an area border router that is attached to the NSSA or stub area. Refer to the RFC 3101 for information on NSSA.

Examples

This example sets the default-cost to 10 for area 1.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# area 1 default-cost 10
```

Related Commands

area nssa, area stub

area filter-list

Use this command to configure filters to advertise summary routes on Area Border Routers (ABR). Use the no parameter with this command to remove the filter configuration.

Command Syntax

```
area AREAILD filter-list TYPE WORD DIRECTION

AREAILD = A.B.C.D|<0-4294967295>
  A.B.C.D  OSPF Area ID in IPv4 address format.
  <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

TYPE = access|prefix
  access  Use access-list to filter summary.
  prefix  Use prefix-list to filter summary.

WORD  Name of an access-list or prefix-list.

DIRECTION = in|out
  in  Filter routes from the other areas to this area.
  out  Filter routes from this area to the other areas.
```
Command Mode
Router mode

Usage
This command is used to suppress particular intra-area from/to area to/from the other areas. You can use this command in conjunction with either the access-list or prefix-list command.

Examples
ZebOS# configure terminal
ZebOS(config)# access-list 1 deny 172.22.0.0/8
ZebOS(config)# router ospf 100
ZebOS(config-router)# area 1 filter-list access 1 in

area multi-area-adjacency
Use this command to enable multi-area adjacency on the specified interface.
Use the no parameter to disable multi-area adjacency.

Command Syntax
area AREAID multi-area-adjacency IFNAME neighbor A.B.C.D
no area AREAID multi-area-adjacency IFNAME (neighbor A.B.C.D)

AREAID = A.B.C.D|<0-4294967293>
IFNAME An alphanumeric string that is the interface name.
A.B.C.D Neighbor’s IP address.

Command Mode
Router mode

Usage
Multi-area adjacency establishes adjacency between the Area Border Routers (ABRs). The specified interface of the ABR is associated with multiple areas. Multiple OSPF interfaces must be created for multiple areas.

Examples
ZebOS# configure terminal
ZebOS(config)# router ospf 1
ZebOS(config)# router-id 10.10.10.10
ZebOS(config-router)# area 1 multi-area-adjacency eth1 neighbor 20.20.20.10
ZebOS(config-router)# no area 1 multi-area-adjacency eth1

area nssa
Use this command to set an area as a Not-So-Stubby-Area (NSSA).
Use the no parameter with this command to remove this designation.

Command Syntax
area AREAID nssa (OPTIONS)
no area AREAID nssa (OPTIONS)
OSPF Commands

AREAID = A.B.C.D|<0-4294967295>

A.B.C.D OSPF Area ID in IPv4 address format.
<0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

OPTIONS = {TRANSLATOR|no-redistribution|DEFAULT-ORIGINATE|no-summary}

TRANSLATOR = translator-role ROLE

translator-role Specify NSSA-ABR translator-role.
ROLE = candidate|never|always

candidate Router may translate NSSA-LSA to Type-5 LSA if it is elected.
never Router never translate NSSA-LSA.
always Router always translate NSSA-LSA to Type-5 LSA.

no-redistribution Do not redistribute external route into NSSA.

DEFAULT-ORIGINATE = default-information-originate {metric <0-16777214>|metric-type <1-2>}

default-information-originate Originate Type-7 default LSA into NSSA.
metric <0-16777214> Specify metric value.
metric-type <1-2> Specify external metric type.

no-summary Do not inject inter-area route into NSSA.

no-redistribution Do not redistribute into this NSSA area

translator-role NSSA-ABR translator role

Default
No NSSA area is defined.

Command Mode
Router mode

Usage
There are no external routes in an OSPF stub area, so you cannot redistribute from another protocol into a stub area. A NSSA allows external routes to be flooded within the area. These routes are then leaked into other areas. Although, the external routes from other areas still do not enter the NSSA.

You can either configure an area to be a stub area or an NSSA, not both.

Use the area nssa command to simplify administration if you are connecting a central site using OSPF to a remote site that is using a different routing protocol. You can extend OSPF to cover the remote connection by defining the area between the central router and the remote router as a NSSA.

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# area 0.0.0.51 nssa
ZebOS(config-router)# area 3 nssa translator-role candidate no-redistribution
default-information-originate metric 34 metric-type 2

Related Commands
area default-cost
area range

Use this command to summarize OSPF routes at an area boundary.

Use the `no` parameter with this command to disable this function.

Command Syntax

```plaintext
area AREAIID range ADDRESS (advertise|not-advertise)
no area AREAIID range
```

AREAID

- **A.B.C.D**
 - OSPF Area ID in IPv4 address format.
- **<0-4294967295>**
 - OSPF Area ID as 4 octets unsigned integer value.

ADDRESS

- **A.B.C.D/M**
 - The area range prefix and length.

advertise

- Advertises this range.

not-advertise

- Does not advertise this range.

Default

Disabled

Command Mode

Router mode

Usage

The area range command is used to summarize intra-area routes for an area. The single summary route is then advertised to other areas by the Area Border Routers (ABRs). Routing information is condensed at area boundaries and outside the area. If the network numbers in an area are assigned in a way such that they are contiguous, the ABRs can be configured to advertise a summary route that covers all the individual networks within the area that fall into the specified range.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# area 1 range 192.16.0.0/24
```

area shortcut

Use this command to configure the short-cutting mode of an area.

Use the `no` parameter with this command to disable this function.

Command Syntax

```plaintext
area AREAIID shortcut (default|enable|disable)
no area AREAIID shortcut (enable|disable)
```

AREAID

- **A.B.C.D**
 - OSPF Area ID in IPv4 address format.
- **<0-4294967295>**
 - OSPF Area ID as 4 octets unsigned integer value.

default

- Sets default short-cutting behavior.

enable

- Forces short-cutting through the area.
disable Disables short-cutting through the area.

Command Mode

Router mode

Usage

Area shortcut enables traffic to go through the non-backbone area with a lower metric; regardless of the ABR router being attached to the backbone area or not.

Examples

```
area 1 shortcut default
area 52 shortcut disable
no area 42 shortcut enable
```

Related Commands

ospf abr-type shortcut

area stub

Use this command to define an area as a stub area.

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) area AREAID stub (no-summary)
```

- **AREAID** = A.B.C.D|<0-4294967295>
- A.B.C.D OSPF Area ID in IPv4 address format.
- <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.
- **no-summary** Stops an ABR from sending summary link advertisements into the stub area.

Default

No stub area is defined.

Command Mode

Router mode

Usage

Configures the `area stub` command on all routers in the stub area. There are two stub area router configuration commands: the `stub` and `default-cost` commands. In all routers attached to the stub area, configure the area by using the `stub` option of the area command. For an area border router (ABR) attached to the stub area, use the `area default-cost` command.

Use the `no-summary` parameter with this command to define a totally stubby area. Define an area as a totally stubby area, when routers in the area do not require learning about summary LSAs from other areas. The area can be defined as a totally stubby area by configuring the Area Border Router of that area using the `area stub no-summary` command.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
```
Using this command to configure a link between two backbone areas that are physically separated through other non-backbone area.

Use the no parameter with this command to remove a virtual link.

Command Syntax

(no) area AREAID virtual-link A.B.C.D (AUTH_KEY|MSG_KEY)

(no) area AREAID virtual-link A.B.C.D authentication (message-digest|null)

(AUTH_KEY|MSG_KEY)

(no) area AREAID virtual-link A.B.C.D (authentication) INTERVAL

AREAID = A.B.C.D|<0-4294967295>

A.B.C.D OSPF Area ID in IPv4 address format.

<0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

A.B.C.D = The IP address associated with a virtual link neighbor.

MSG_KEY = message-digest-key KEYID md5 .LINE

message-digest-key Set the message digest key

KEYID <1-255> Specify the Key ID.

md5 Specify using of the md5 algorithm

LINE Authentication password of 16 characters

AUTH_KEY = authentication-key KEY

KEY An 8 character password

authentication Enable authentication on this virtual link

message-digest Use message-digest authentication.

null = Use null authentication to override password or message digest.

INTERVAL= {dead-interval <1-65535>|hello-interval <1-65535>|retransmit-interval <1-3600>|transmit-delay <1-3600}>

dead-interval= The interval, in seconds, during which no packets are received, and after which the router acknowledges a neighboring router as off-line. The default is 40 seconds.

hello-interval= The interval, in seconds, the router waits before it sends a hello packet. The default is 10 seconds.

retransmit-interval= The interval, in seconds, the router waits before it retransmits a packet. The default is 5 seconds.

transmit-delay= The interval, in seconds, the router waits before it transmits a packet. The default value is 1 second.

Command Mode

Router mode
Usage

In OSPF, all non-backbone areas must be connected to a backbone area. If the connection to the backbone is lost, the virtual link repairs the connection.

You can configure virtual links between any two backbone routers that have an interface to a common non-backbone area. The protocol treats these two routers joined by a virtual link as if they were connected by an unnumbered point-to-point network. To configure virtual link, include both the transit area ID and the corresponding virtual link neighbor’s router ID in the virtual link neighbor. To see the router ID use the `show ip ospf` command.

Configure the `hello-interval` to be the same for all routers attached to a common network. A short `hello-interval` results in the router detecting topological changes faster but also an increase in the routing traffic.

The retransmit-interval is the expected round-trip delay between any two routers in a network. Set the value to be greater than the expected round-trip delay to avoid needless retransmissions.

The transmit-delay is the time taken to transmit a link state update packet on the interface. Before transmission, the link state advertisements in the update packet, are incremented by this amount. Set the `transmit-delay` to be greater than zero. Also, take into account the transmission and propagation delays for the interface.

Include the transit area ID and the corresponding virtual link neighbor’s router ID in each virtual link neighbor to properly configure a virtual link.

Examples

```
ZebOS# configure terminal
ZebOS(config) router ospf 100
ZebOS(config-router) area 1 virtual-link 10.10.11.50 hello 5 dead 10
```

Related Commands

area authentication, show ip ospf, show ip ospf virtual-links

auto-cost reference bandwidth

Use this command to control how OSPF calculates default metrics for the interface.

Use the `no` parameter with this command to assign cost, based only on the interface bandwidth.

Command Syntax

```
auto-cost reference-bandwidth <1-4294967>
no auto-cost reference-bandwidth
```

<1-4294967> The reference bandwidth in terms of Mbits per second. The default reference bandwidth is 100 Mbps.

Command Mode

Router mode

Usage

By default OSPF calculates the OSPF metric for an interface by dividing the reference bandwidth by the interface bandwidth. The default value for the reference bandwidth is 100Mbps. The auto-cost command is used to differentiate high bandwidth links. For multiple links with high bandwidth, specify a larger reference bandwidth value to differentiate cost on those links.

Examples

```
ZebOS# configure terminal
```
ZebOS(config)# router ospf 100
ZebOS(config-router)# auto-cost reference-bandwidth 50

Related Commands
ip ospf cost

capability opaque
Use this command to enable opaque-LSAs.
Use the no parameter with this command to disable it.

Command Syntax
 (no) capability opaque

Default
 Enabled

Command Mode
 Router mode

Usage
 Opaque-LSAs are Type 9, 10 and 11 LSAs that deliver information used by external applications.

Examples
 ZebOS# configure terminal
 ZebOS(config)# router ospf 100
 ZebOS(config-router)# no capability opaque

capability restart
Use this command to enable OSPF graceful restart or restart signaling features.
Use the no parameter with this command to disable it.

Command Syntax
 (no) capability restart [graceful|signaling]
 graceful Specify enabling OSPF graceful restart feature.
 signaling Specify enabling OSPF signaling restart feature.

Default
 Enabled

Command Mode
 Router mode

Examples
 ZebOS# configure terminal
 ZebOS(config)# router ospf 100
clear ip ospf process

Use this command to clear and restart the OSPF routing process. Specify the Process ID to clear one particular OSPF process. When no Process ID is specified, this command clears all running OSPF processes.

Command Syntax

```
clear ip ospf process
clear ip ospf PROCESSID process
```

PROCESSID = <0-65535> Specifies the Routing Process ID.

Command Mode

Privileged Exec Mode

Examples

```
ZebOS# clear ip ospf process
```

compatible rfc1583

Use this command to restore the method used to calculate summary route costs per RFC. Use the `no` parameter with this command to disable RFC 1583 compatibility.

Command Syntax

```
(no) compatible rfc1583
```

Default

By default, OSPF is rfc 2328 compatible.

Command Mode

Router mode

Usage

Prior to RFC 2328, OSPF was compliant with RFC 1583, that specified method for calculating the metric for summary routes based on the minimum metric of the component paths available. RFC 2328 specifies a method for calculating metrics based on maximum cost. With this change, it is possible that all of the ABRs in an area might not be upgraded to the new code at the same time. `Compatible rfc1583` command addresses this issue and allows the selective disabling of compatibility with RFC 2328.

Examples

```
ZebOS(config)# router ospf 100
ZebOS(config-router)# compatible rfc1583
```

debug ospf events

Use this command to specify debugging options for OSPF event troubleshooting. Use this command without parameters to turn on all the options.
Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ospf events (abr|asbr|lsa|nssa|os|router|vlink)

  abr shows ABR events
  asbr shows ASBR events
  lsa shows LSA events
  nssa shows NSSA events
  os shows OS interaction events
  router shows other router events
  vlink shows virtual link events
```

Command Mode

Privileged Exec mode and Configure mode

Usage

The `debug ospf event` command enables the display of debug information related to OSPF internal events.

Examples

```
ZebOS# no debug ospf event abr
ZebOS# debug ospf event asbr
ZebOS# debug ospf event lsa
ZebOS# no debug ospf event nssa
ZebOS# debug ospf event os
ZebOS# debug ospf event router
ZebOS# debug ospf event vlink
```

Related Commands

`log file`

debug ospf ifsm

Use this command to specify debugging options for OSPF Interface Finite State Machine (IFSM) troubleshooting. Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ospf ifsm (status|events|timers)

  events  Displays IFSM event information
  status  Displays IFSM status information
  timers  Displays IFSM timer information
```

Command Mode

Privileged Exec mode and Configure mode

Usage

The `debug ospf ifsm` command enables the display of debug information related to the Interface Finite State Machine (IFSM).
OSPF Commands

Examples

ZebOS# no debug ospf ifsm events
ZebOS# debug ospf ifsm status
ZebOS# debug ospf ifsm timers

Related Commands

log file

debug ospf lsa

Use this command to specify debugging options for OSPF Link State Advertisements (LSA) troubleshooting.

Use the no parameter with this command to disable this function.

Command Syntax

(no) debug ospf lsa (flooding|generate|install|maxage|refresh)

flooding Displays LSA flooding.
generate Displays LSA generation.
install Show LSA installation.
maxage Shows maximum age of the LSA in seconds.
refresh Displays LSA refresh.

Command Mode

Privileged Exec mode and Configure mode

Usage

The debug ospf lsa command enables the display of debug information related to internal operations of LSAs.

Examples

ZebOS# no debug ospf lsa refresh
ZebOS# debug ospf lsa flooding
ZebOS# debug ospf lsa install
ZebOS# debug ospf lsa maxage
ZebOS# debug ospf lsa generate

Related Commands

log file

debug ospf nfsm

Use this command to specify debugging options for OSPF Neighbor Finite State Machines (NFSMs).

Use the no parameter with this command to disable this function.

Command Syntax

(no) debug ospf nfsm (events|status|timers)

events Displays NSM event information.
status Displays NSM status information.
timers Displays NSM timer information.
Command Mode
Privileged Exec mode Configure mode

Usage
The debug ospf nfsm command enables the display of debug information related to the Neighbor Finite State Machine (NFSM).

Examples
ZebOS# debug ospf nfsm events
ZebOS# no debug ospf nfsm timers

Related Commands
log file

debg ospf nsm
Use this command to specify debugging options for OSPF NSM information.
Use the no parameter with this command to disable this function.

Command Syntax
(no) debug ospf nsm (interface|redistribute)
 interface Specify NSM interface information.
 redistribute Specify NSM redistribute information.

Command Mode
Privileged Exec mode and Configure mode

Usage
The debug ospf nsm command enables the display of debug information related to the Network Services Module (NSM).

ZebOS# debug ospf nsm interface
ZebOS# no debug ospf nsm redistribute

Related Commands
log file

debg ospf packet
Use this command to specify debugging options for OSPF packets.
Use the no parameter with this command to disable this function.

Command Syntax
(no) debug ospf packet PARAMETERS
 PARAMETERS = dd|detail|hello|ls-ack|ls-request|ls-update|recv|send
 dd Specifies debugging for OSPF database descriptions.
 detail Sets the debug option to detailed information.
OSPF Commands

hello Specifies debugging for OSPF hello packets.

ls-ack Specifies debugging for OSPF link state acknowledgments.

ls-request Specifies debugging for OSPF link state requests.

ls-update Specifies debugging for OSPF link state updates.

recv Specifies the debug option set for received packets.

send Specifies the debug option set for sent packets.

Command Mode

Privileged Exec mode and Configure mode

Usage

The `debug ospf packet` command enables the display of debug information related to the sending and receiving of packets.

Examples

```
ZebOS# debug ospf packet detail
ZebOS# debug ospf packet dd send detail
ZebOS# no debug ospf packet ls-request recv detail
```

Related Commands

log file

debug ospf route

Use this command to specify which route calculation to debug. Use this command without parameters to turn on all the options.

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ospf route (ase|ia|install|spf)
  ia  Specifies the debugging of Inter-Area route calculation
  ase Specifies the debugging of external route calculation
  install Specifies the debugging of route installation
  spf  Specifies the debugging of SPF calculation
```

Command Mode

Privileged Exec mode and Configure mode

Usage

The `debug ospf route` command enables the display of debug information related to route-calculation.

Examples

```
ZebOS# debug ospf route
ZebOS# no debug ospf route ia
ZebOS# debug ospf route install
```
Related Commands

log file

default-information originate

Use this command to create a default external route into an OSPF routing domain.
Use the no parameter with this command to disable this feature.

Command Syntax

default-information originate {always|METRIC|METRICTYPE|ROUTEMAP}
no default-information originate
 always Used to advertise the default route regardless of whether there is a default route.
 METRIC = metric <0-16777214> Sets the OSPF metric used in creating the default route. The default metric value is 10. The value used is specific to the protocol.
 METRICTYPE = metric-type 1|2 Sets the OSPF external link type for default routes.
 1 Sets OSPF External Type 1 metrics.
 2 Sets OSPF External Type 2 metrics.
 ROUTEMAP = route-map WORD
 WORD = Specifies the name of route-map. It is a string comprised of any characters, numbers or symbols.

Command Mode

Router mode

Usage

The system acts like an Autonomous System Boundary Router (ASBR) when you use the default-information originate command to redistribute routes into an OSPF routing domain. An ASBR does not by default, generate a default route into the OSPF routing domain.

When you use the default-information originate command, also specify the route-map map-name option to avoid a dependency on the default network in the routing table.

The metric-type is an external link type associated with the default route advertised into the OSPF routing domain. The value of the external route could be either Type 1 or 2; the default is the Type 2.

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# default-information originate always metric 23 metric-type 2 route-map myinfo

Related Commands

route-map

default-metric

Use this command to set default metric values for the OSPF routing protocol.
Use the no parameter with this command to return to the default state.
OSPF Commands

Command Syntax

```
default-metric <1-16777214>
no default-metric

<1-16777214> Default metric value appropriate for the specified routing protocol.
```

Default

Built-in, automatic metric translations, as appropriate for each routing protocol.

Command Mode

Router mode

Usage

A default metric facilitates redistributing routes even with incompatible metrics. If the metrics do not convert, the default metric provides an alternative and enables the redistribution to continue. Default-metric command is used to cause the current routing protocol to use the same metric value for all redistributed routes. Use this command in conjunction with the `redistribute` command.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# default-metric 100
```

Related commands

`redistribute`

distance

Use this command to define OSPF route administrative distances based on route type.

Use the `no` parameter with this command to restore the default value.

Command Syntax

```
distance <1-255>|ROUTEPARAMETER
no distance ospf

<1-255> = OSPF administrative distance.
ROUTEPARAMETER= ospf {ROUTE1|ROUTE2|ROUTE3}

ROUTE1= external <1-255> Sets the distance for routes from other routing domains, learned by redistribution.
ROUTE2= inter-area <1-255> Sets the distance for all routes from one area to another area.
ROUTE3= intra-area <1-255> Sets the distance for all routes within an area.

<1-255> Distance for external, intra-area or inter-area routes.
```

Default

The default distance for each type of route (intra, inter or external) is 110.

Command Mode

Router mode
Usage

The administrative distance rates the trustworthiness of a routing information source. The distance could be any integer from 0 to 255. A higher distance value indicates a lower trust rating. For example, an administrative distance of 255 indicates that the routing information source cannot be trusted and should be ignored.

Use this command to set the distance for an entire group of routes, rather than a specific route that passes an access list.

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# distance ospf inter-area 20 intra-area 10 external 40

distribute-list

Use this command to filter networks in routing updates.

Use the no parameter with this command to disable this function.

Command Syntax

distribute-list LISTNAME out ROUTE
no distribute-list LISTNAME

LISTNAME Specifies the name of the access list.
out Indicates that outgoing advertised routes will be cleared.
ROUTE = bgp|ospf (WORD)|connected|isis|kernel|rip|static
 bgp Specifies BGP routes.
 ospf Specifies OSPF routes.
 WORD Specifies OSPF route name.
 connected Specifies connected routes.
 isis Specifies IS-IS routes.
 kernel Specifies kernel routes.
 rip Specifies RIP routes.
 static Specifies static routes.

Command Mode

Router mode

Usage

Use this command when redistributing other routing protocols into the OSPF routing table.

Examples

The following example shows the distribution of BGP routing updates based on the access list list1 (network 172.10.0.0).

ZebOS# configure terminal
ZebOS(config)# access-list list1 permit 172.10.0.0 0.0.255.255
ZebOS(config)# router ospf 100
ZebOS(config-router)# distribute-list list1 out bgp
ZebOS(config-router)# redistribute bgp
domain-id

Use this command to specify the domain ID for a particular OSPF VRF instance.
Use the no parameter with this command to remove a domain ID.

Command Syntax

(no) domain-id A.B.C.D (secondary)
(no) domain-id type TYPE value VALUE (secondary)

A.B.C.D OSPF domain ID in IP address format
TYPE domain ID value type. Can be one of the following:
 type-as AS format. Hex value is 0x0005.
 type-as4 AS4 format. Hex value is 0x0205.
 type-back-comp Used for backward compatibility. Hex value is 0x8000.
VALUE 6-byte hex domain ID value
secondary When specified, the domain ID is considered secondary. If not specified the domain ID is considered primary.

Default
No domain ID is defined.

Command Mode
Router mode

Usage
Use this command to specify the domain ID for a particular OSPF instance bound to VRF. The routes sent from OSPF to the VPN cloud are sent along with the configured domain ID. In this way, the domain ID acts as an identification for the route received from each OSPF domain.

Examples
The following example shows configuring a primary domain ID in IP address format.

ZebOS# configure terminal
ZebOS(config)# router ospf 100 vrf IPI
ZebOS(config-router)# domain-id 12.12.12.12

The following example shows configuring a secondary domain ID in IP address format.

ZebOS# configure terminal
ZebOS(config)# router ospf 100 vrf IPI
ZebOS(config-router)# domain-id 13.13.13.13 secondary

The following example shows configuring a primary domain ID in AS type format.

ZebOS# configure terminal
ZebOS(config)# router ospf 100 vrf IPI
ZebOS(config-router)# domain-id type type-as value 123456abcdef

The following example shows configuring a secondary domain ID in AS type format.
enable db-summary-opt

Use this command to enable the database summary list optimization for OSPFv2. The default setting is disabled. Use the no form of the command to disable database summary list optimization.

Command Syntax

(no) enable db-summary-opt

Command Mode

Router mode

Usage

When this feature is enabled, the database exchange process is optimized by removing the LSA from the database summary list for the neighbor, if the LSA instance in database summary list is the same as, or less recent than, the listed LSA in the database description packet received from the neighbor.

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf
ZebOS(config-router)# enable db-summary-opt
ZebOS(config-router)# no enable db-summary-opt

enable ext-ospf-multi-inst

Use this command to enable OSPF multiple-instance support to allow multiple OSPF instances to run on a subnet. Use the no parameter with this command to disable OSPF multiple-instance support.

Command Syntax

(no) enable ext-ospf-multi-inst

Default

Multiple-instance support is disabled.

Command Mode

Configure mode

Usage

The enable ext-ospf-multi-inst command functions only if the --enable-ext-ospf-multi-inst option is enabled when compiling ZebOS. If this feature is already in use, and no enable ext-ospf-multi-inst is executed, all OSPF instances will be reset to the default instance IDs. The default instance ID is 0.

Examples

ZebOS# configure terminal
ZebOS(config)# enable ext-ospf-multi-inst
OSPF Commands

host area
Use this command to configure a stub host entry belonging to a particular area.
Use the no parameter with this command to remove the host area configuration.

Command Syntax
(no) host A.B.C.D area AREAID (COST)

- A.B.C.D Specifies IP address of the host.
- AREAID = A.B.C.D|<0-4294967295>
 - A.B.C.D OSPF Area ID in IPv4 address format.
 - <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.
- COST = cost <0-65535> Specifies cost for stub host entry.

Default
No host entry is configured.

Command Mode
Router mode

Usage
Using this command, you can advertise specific host routes in the router-LSA as stub link. Since stub host belongs to the specified router, specifying cost is not important.

Examples
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# host 172.16.10.100 area 1
ZebOS(config-router)# host 172.16.10.101 area 2 cost 10

ip ospf authentication
Use this command to send and receive OSPF packets with the specified authentication method.
Use the no parameter with this command to disable the authentication.

Command Syntax
ip ospf (A.B.C.D) authentication (message-digest|null)
no ip ospf (A.B.C.D) authentication

- A.B.C.D The IP address of the interface.
- message-digest Use the message digest authentication.
- null Use no authentication. It overrides password or message-digest authentication of the interface.

Command Mode
Interface mode

Usage
This command enables OSPF packet to use authentication on the current interface.
Examples
In this example, interface eth0 is configured to have no authentication. This will override any text or MD5 authentication configured on this interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf authentication null
```

Related Commands
ip ospf authentication-key, area authentication, ip ospf message-digest-key

ip ospf authentication-key

Use this command to specify an OSPF authentication password for the neighboring routers. Use the `no` parameter with this command to remove an OSPF authentication password.

Command Syntax

```
ip ospf (A.B.C.D) authentication-key .LINE
no ip ospf (A.B.C.D) authentication-key
```

- **A.B.C.D** The IP address of the interface.
- **LINE** Specifies the authentication password. String by the end of line will be taken.

Default

Authentication password not specified.

Command Mode

Interface mode

Usage

This command creates a password (key) that is inserted into the OSPF header when ZebOS software originates routing protocol packets. Assign a separate password to each network for different interfaces. All neighboring routers on the same network with the same password exchange OSPF routing data.

The key can be used only when authentication is enabled for an area. Use the `area authentication` command to enable authentication.

Simple password authentication allows a password to be configured for each area. Configure the routers in the same routing domain with the same password.

Examples

In the following example, an authentication key `test` is created on interface eth0 in area 0. Note that first authentication is enabled for area 0.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# network 10.10.10.0/24 area 0
ZebOS(config-router)# area 0 authentication
ZebOS(config-router)# exit
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf 3.3.3.3 authentication-key test
```
OSPF Commands

Related Commands

area authentication, ip ospf authentication.

ip ospf cost

Use this command to explicitly specify the cost of link-state metric in a router-LSA.

Use the `no` parameter with this command to reset the interface cost to the default value.

Command Syntax

```
ip ospf (A.B.C.D) cost COST
no ip ospf (A.B.C.D) cost
```

- **A.B.C.D** The IP address of the interface.
- **COST = <1-65535>** Specifies the link-state metric. The default value is 10.

Command Mode

Interface mode

Usage

The interface cost indicates the overhead required to send packets across a certain interface. This cost is stated in the Router-LSA's link. The cost is inversely proportional to the bandwidth of an interface. By default, the cost of an interface is calculated based on the bandwidth (10^8 / bandwidth); use this `ip ospf cost` command to set the cost manually.

Examples

The following example shows setting ospf cost as 10 on interface eth0 for IP address 10.10.10.50

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf 3.3.3.3 cost 10
```

Related Commands

show ip ospf interface, auto-cost

ip ospf database-filter

Use this command to turn on the LSA database-filter for a particular interface.

Use the `no` parameter with this command to turn off the filter.

Command Syntax

```
ip ospf (A.B.C.D) database-filter all out
no ip ospf (A.B.C.D) database-filter
```

- **A.B.C.D** The IP address of the interface.
- **all** Filter all LSAs
- **out** Outgoing LSAs

Default

Disabled, all outgoing LSAs are flooded to the interface.
Command Mode

Interface mode

Usage

OSPF floods new LSAs over all interfaces in an area, except the interface on which the LSA arrives. This redundancy ensures robust flooding. However, too much redundancy can waste bandwidth and might lead to excessive link and CPU usage in certain topologies, resulting in destabilizing the network. To avoid this, use the database-filter command to block flooding of LSAs over specified interfaces.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf database-filter all out
```

ip ospf dead-interval

Use this command to set the interval during which no hello packets are received and after which a neighbor is declared dead.

Use the `no` parameter with this command to return to the default time. If you have configured this command specifying the IP address of the interface and want to remove the configuration, use the `no` parameter with the specified IP address (`no ip ospf dead-interval A.B.C.D`).

Command Syntax

```
ip ospf (A.B.C.D) dead-interval INTERVAL
no ip ospf (A.B.C.D) dead-interval
```

- **A.B.C.D** The IP address of the interface.
- **INTERVAL = <1-65535>** Specifies the interval in seconds. The default interval is 40 seconds.

Command Mode

Interface mode

Usage

The dead-interval is the amount of time that the router waits to receive an OSPF hello packet from the neighbor before declaring the neighbor down. This value is advertised in the router’s hello packets. It must be a multiple of hello-interval and be the same for all routers on a specific network.

Examples

The following example shows configuring dead-interval for 10 seconds on eth0 interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf dead-interval 10
```

Related Commands

- `ip ospf hello-interval`, `show ip ospf interface`
ip ospf disable all

Use this command to completely disable OSPF packet processing on an interface.

Command Syntax

```
ip ospf disable all
```

Command Mode

Interface mode

Usage

This command overrides the network area command and disables the processing of packets on the specific interface.

Example

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf disable all
```

ip ospf hello-interval

Use this command to specify the interval between hello packets.

Use the `no` parameter with this command to return to the default time.

Command Syntax

```
ip ospf (A.B.C.D) hello-interval INTERVAL
no ip ospf (A.B.C.D) hello-interval
```

A.B.C.D The IP address of the interface.

INTERVAL = <1-65535> Specifies the interval in seconds. The default interval is 10 seconds.

Command Mode

Interface mode

Usage

The hello-interval is advertised in the hello packets. Configure the same hello-interval for all routers on a specific network. A shorter hello interval ensures faster detection of topological changes but results in more routing traffic.

Examples

The following example shows setting the hello-interval for 3 seconds on interface eth0.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf hello-interval 3
```

Related Commands

ip ospf dead-interval, show ip ospf interface
ip ospf message-digest-key

Use this command to register MD5 key for OSPF MD5 authentication.

Use the `no` parameter with this command to remove an MD5 key.

Command Syntax

```
ip ospf A.B.C.D message-digest-key KEYID md5 .LINE
no ip ospf A.B.C.D message-digest-key KEYID
```

- **A.B.C.D** The IP address of the interface.
- **KEYID** = <1-255> Specifies a key ID.
- **md5** Use the MD5 algorithm.

LINE 1-16 characters that specify the OSPF password. String by the end of line will be taken.

Default

Disabled.

Command Mode

Interface mode

Usage

Message Digest Authentication is a cryptographic authentication. A key (password) and key-id are configured on each router. The router uses an algorithm based on the OSPF packet, the key, and the key-id to generate a message digest that gets appended to the packet.

Use this command for uninterrupted transitions between passwords. This is helpful for administrators who want to change the OSPF password without disrupting communication. The system begins a rollover process until all the neighbors have adopted the new password. This allows neighboring routers to continue communication while the network administrator is updating them with a new password. The router will stop sending duplicate packets once it detects that all of its neighbors have adopted the new password.

Maintain only one password per interface, removing the old password whenever you add a new one. This will prevent the local system from continuing to communicate with the system that is using the old password. Removing the old password also reduces overhead during rollover.

All neighboring routers on the same network must have the same password value to enable exchange of OSPF routing data.

Examples

The following example shows OSPF authentication on the interface eth0 when IP address has not been specified.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf authentication message-digest
ZebOS(config-if)# ip ospf message-digest-key 1 md5 yourpass
```

The following example shows OSPF authentication on the interface eth0 for the IP address 1.1.1.1. (If the interface has two IP addresses assigned-- 1.1.1.1 & 2.2.2.2, OSPF authentication will be enabled only for the IP address 1.1.1.1)

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf 1.1.1.1 authentication message-digest
ZebOS(config-if)# ip ospf 1.1.1.1 message-digest-key 2 md5 yourpass
```
ip ospf mtu

Use this command to set MTU size for OSPF to construct packets based on this value.
Use the no parameter with this command to return to the default value.

Command Syntax

- `ip ospf mtu <576-65535>`
- `no ip ospf mtu <576-65535>`

Default

By default, OSPF uses interface MTU derived from the kernel.

Command Mode

Interface mode

Usage

Whenever OSPF constructs packets, it uses interface MTU size as Maximum IP packet size. This command forces OSPF to use the specified value overriding the actual interface MTU size.

This command allows an administrator to configure the MTU size recognized by the OSPF protocol. It does not configure the MTU settings on the kernel. OSPF will not recognize MTU size configuration changes made to the kernel until the MTU size is updated through the CLI.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf mtu 1480
```

ip ospf mtu-ignore

Use this command to configure OSPF so that it does not check the MTU size during DD (Database Description) exchange.
Use the no parameter with this command to make sure that OSPF checks MTU size during DD exchange.

Command syntax

- `ip ospf (A.B.C.D) mtu-ignore`
- `no ip ospf (A.B.C.D) mtu-ignore`

A.B.C.D IP address of the interface.

Command Mode

Interface mode

Usage

By default, during DD exchange process, OSPF checks the MTU size described in DD packets received from the neighbor. If the MTU size does not match the interface MTU, the neighbor adjacency is not established. Using this command makes OSPF ignore this check and allows establishing of adjacency regardless of MTU size in the DD packet.
Examples
 ZebOS# configure terminal
 ZebOS(config)# interface eth0
 ZebOS(config-router)# ip ospf mtu-ignore

ip ospf network
Use this command to configure the OSPF network type to a type different from the default for the media.
Use the no parameter with this command to return to the default value.

Command Syntax
 ip ospf network broadcast|non-broadcast|point-to-point|point-to-multipoint
 no ip ospf network
 broadcast Sets the network type to broadcast.
 non-broadcast Sets the network type to NBMA.
 point-to-multipoint Sets the network type to point-to-multipoint.
 point-to-point Sets the network type to point-to-point.

Default
Broadcast type.

Command Mode
interface mode

Usage
Use the ip ospf network command to force interface network type as a specified type. Depending on the network type, OSPF changes the behavior of the sending packet and describes link in LSAs.

Examples
The following example shows setting the network to point-to-point type on the eth0 interface.
 ZebOS# configure terminal
 ZebOS(config)# interface eth0
 ZebOS(config-if)# ip ospf network point-to-point

ip ospf priority
Use this command to set the router priority to determine the designated router for the network.
Use the no parameter with this command to return to the default value.

Command Syntax
 ip ospf (A.B.C.D) priority PRIORITY
 no ip ospf (A.B.C.D) priority
 A.B.C.D The IP address of the interface.
 PRIORITY = <0-255> Specifies the Router Priority of the interface. Default value is 1.
OSPF Commands

Default
The default priority is 1.

Command Mode
Interface mode

Usage
Set the priority to help determine the OSPF Designated Router (DR) for a network. If two routers attempt to become the DR, the router with the higher router priority becomes the DR. If the router priority is the same for two routers, the router with the higher router ID takes precedence.

Only routers with nonzero router priority values are eligible to become the designated or backup designated router.

Examples
The following example shows setting the OSPF priority value to 3 on the eth0 interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf priority 3
```

Related Commands
ip ospf network

Equivalent Commands
ospf priority

ip ospf resync-timeout

Use this command to set the interval after which adjacency is reset if out-of-band re-synchronization has not occurred. The interval period starts from the time a restart signal is received from a neighbor.

Use the no parameter with this command to return to the default value.

Command Syntax

```
ip ospf (A.B.C.D) resync-timeout <1-65535>
no ip ospf (A.B.C.D) resync-timeout
```

A.B.C.D The IP address of the interface.

<1-65535> Specifies the re-synchronization timeout value of the interface in seconds.

Command Mode
Interface mode

Examples
The following example shows setting the OSPF re-synchronization timeout value to 65 seconds on the eth0 interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf resync-timeout 65
```
ip ospf retransmit-interval

Use this command to specify the time between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface.

Use the **no** parameter with this command to return to the default value.

Command Syntax

```
ip ospf A.B.C.D retransmit-interval INTERVAL
no ip ospf A.B.C.D retransmit-interval
```

- **A.B.C.D** The IP address of the interface.
- **INTERVAL = <1-65535>** Specifies the interval in seconds. The default interval is 5 seconds.

Command Mode

Interface mode

Usage

After sending an LSA to a neighbor, the router keeps the LSA until it receives an acknowledgement. In case the router does not receive an acknowledgement during the set time (the retransmit interval value) it retransmits the LSA.

Set the retransmission interval value conservatively to avoid needless retransmission. The interval should be greater than the expected round-trip delay between two routers.

Examples

The following example shows setting the **ospf retransmit interval** to 6 seconds on the eth0 interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf retransmit-interval 6
```

ip ospf transmit-delay

Use this command to set the estimated time it takes to transmit a link-state-update packet on the interface.

Use the **no** parameter with this command to return to the default value.

Command Syntax

```
ip ospf A.B.C.D transmit-delay DELAY
no ip ospf A.B.C.D transmit-delay
```

- **A.B.C.D** The IP address of the interface.
- **DELAY = <1-65535>** Specifies the time, in seconds, to transmit a link-state update. The default interval is 1 second.

Command Mode

Interface mode

Usage

The transmit delay value adds a specified time to the age field of an update. If the delay is not added, the time in which the LSA transmits over the link is not considered. This command is especially useful for low speed links. Add transmission and propagation delays when setting the transmit delay value.
OSPF Commands

Examples
The following example shows setting the OSPF transmit delay time to 3 seconds on the eth0 interface.

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ip ospf transmit-delay 3
```

max-concurrent-dd

Use this command to set the limit for the number of Database Descriptors (DD) that can be processed concurrently.

Command Syntax
```
max-concurrent-dd <1-65535>
<1-65535> Specify the number of DD processes.
```

Command Mode
Router mode

Usage
This command is useful when a router's performance is affected from simultaneously bringing up several OSPF adjacencies. This command limits the maximum number of DD exchanges that can occur concurrently per OSPF instance, thus allowing for all of the adjacencies to come up.

Examples
The following example set the max-concurrent-dd value to 4 that will allow processing of only 4 DD processes at a time.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# max-concurrent-dd 4
```

neighbor

Use this command to configure OSPF routers interconnecting to NBMA networks.

Use the no parameter with this command to remove a configuration.

Command Syntax
```
(no) neighbor A.B.C.D (COST){PRIORITY|POLL-INTERVAL}
A.B.C.D Specifies the interface IP address of the neighbor.
PRIORITY = priority <0-255> Specifies the 8-bit number indicating the router priority value of the non-broadcast neighbor associated with the specified IP address. The default value is 0. This keyword does not apply to point-to-multipoint interfaces.
POLL-INTERVAL = poll-interval <1-65535> Dead neighbor polling interval in seconds. It is recommended to set this value much higher than the hello interval. The default value is 120 seconds.
COST = cost <1-65535> Specifies the link-state metric to this neighbor.
```

Command Mode
Router mode
Usage
To configure neighbor on NBMA network manually use the `neighbor` command and include one neighbor entry for each known nonbroadcast network neighbor. Configure the neighbor address on the primary address of the interface.

Poll interval is the reduced rate at which routers continue to send hello packets, when a neighboring router has become inactive. Set the poll interval to be much larger than hello interval.

Examples
This example shows neighbor configured with a priority value and poll interval time.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# neighbor 1.2.3.4 priority 1 poll-interval 90
ZebOS(config-router)# neighbor 1.2.3.4 cost 15
```

network area
Use this command to enable OSPF routing with a specified Area ID (and optionally an instance ID) on interfaces with IP addresses that match the specified network address.

Use the `no` parameter with this command to unconfigure the configuration and disable OSPF routing on the interfaces.

Command Syntax
```
(no) network NETWORKADDRESS area AREAID (instance-id <0-225>)

network

NETWORKADDRESS = A.B.C.D/M|A.B.C.D X.Y.Z.W
A.B.C.D/M IPv4 network address with prefix length.
A.B.C.D IPv4 network address.
X.Y.Z.W Wildcard mask.

AREAID = A.B.C.D|<0-4294967295>
A.B.C.D OSPF Area ID in IPv4 address format.
<0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

instance-id Interface instance ID
<0-225> Instance ID range. Default is 0.
```

Default
No network area is configured.

Command Mode
Router mode

Usage
OSPF routing can be enabled per IPv4 subnet basis. Network address can be defined using the prefix length or a wildcard mask. A wildcard mask is comprised of consecutive 0 as network bits and consecutive 1 as host bits.

If OSPF multiple-instance support is enabled (using the `enable ext-ospf-multi-inst` command), different instance IDs can be enabled on the same subnet. By default, the instance ID is 0.
Examples
The following shows using the `network` command with OSPF multiple-instance support disabled.

```
zebos# configure terminal
zebos(config)# router ospf 100
zebos(config-router)# network 10.0.0.0/8 area 3
zebos(config-router)# network 10.0.0.0/8 area 1.1.1.1
```

The following shows using the `network` command with OSPF multiple-instance support enabled.

```
zebos# configure terminal
zebos(config)# router ospf 100
zebos(config-router)# network 10.0.0.0/8 area 3 instance-id 4
```

ospf abr-type

Use this command to set an OSPF Area Border Router (ABR) type.

Use the `no` parameter with this command to revert the ABR type to the default setting (Cisco).

Command Syntax

```
ospf abr-type cisco|ibm|shortcut|standard
no ospf abr-type (cisco|ibm)
```

- **cisco** Specifies an alternative ABR using Cisco implementation (RFC 3509). This is the default ABR type.
- **ibm** Specifies an alternative ABR using IBM implementation (RFC 3509).
- **shortcut** Specifies a Shortcut ABR (draft-ietf-ospf-shortcut-abr-02.txt).
- **standard** Specifies a standard behavior ABR (RFC 2328).

Default

ABR type *Cisco*

Command Mode

Router mode

Usage

Specifying the ABR type allows better functioning between different implementations. This command is specially useful in a multi-vendor environment. The different ABR types are:

- **Cisco ABR Type**: By this definition, a router is considered an ABR if it has more than one area actively attached and one of them is the backbone area.
- **Standard ABR Type**: By this definition, a router is considered an ABR if it has more than one area actively attached to it.
- **IBM ABR Type**: By this definition, a router is considered an ABR if it has more than one area actively attached and the backbone area is configured. In this case the configured backbone need not be actively connected.
- **Shortcut ABR Type**: The Shortcut ABR improves over the Standard ABR behavior by modifying the calculation of inter-area routes. It is allowed to install inter-area routes through non-backbone areas if the non-backbone path is better, thus providing a shortcut through these areas. To prevent routing loops, the inter-area routes are re-advertised only if they are associated with the backbone area.

Examples

```
zebos# configure terminal
zebos(config)# router ospf 100
```

48
ZebOS(config-router)# ospf abr-type ibm

Related Commands
area short-cut

ospf restart grace-period
Use this command to configure the Grace Period for restarting the router.
Use the no parameter with this command to revert to default.
Note: This command is available only when configuration option --enable-restart is enabled when compiling ZebOS.

Command Syntax
(no) ospf restart grace-period <1-1800>
<1-1800> Specifies the grace period in seconds.

Command Mode
Configure mode

Usage
Use this command to enable the OSPF Graceful Restart feature on OSPF daemon. If this command is configured, NSM is notified about the Grace Period. In case, OSPF daemon unexpectedly shuts down, NSM sends this value to the OSPF daemon when it comes up again. OSPF daemon uses this value to end the Graceful state.

Examples
ZebOS# configure terminal
ZebOS(config)# ospf graceful-restart grace-period 250

ospf restart helper
Use this command to configure the helper behavior for Graceful Restart.
Use the no parameter with this command to revert to default.
Note: This command is available only when configuration option --enable-restart is enabled when compiling ZebOS.

Command Syntax
ospf restart helper never router-id A.B.C.D
router-id Router ID of neighbor to never to act as helper
A.B.C.D Router ID in IPv4 address format
ospf restart helper POLICY
POLICY = only-reload|only-upgrade|max-grace-period <1-1800>
only-reload Help only on software reloads
only-upgrade Help only on software upgrades
max-grace-period Help only if received grace-period is less than this value
no ospf restart helper never router-id A.B.C.D|all
OSPF Commands

router-id
Router ID of neighbor to never to act as helper
A.B.C.D
Router ID in IPv4 address format
all
All router IDs

```bash
no ospf restart helper POLICY

POLICY = only-reload|only-upgrade|max-grace-period <1-1800>

only-reload Help only on software reloads  
only-upgrade Help only on software upgrades  
max-grace-period Help only if received grace-period is less than this value
```

Command Mode

Configure mode

Usage

Use the `never` parameter with the `ospf restart helper` command to prevent the neighbor from entering Helper mode.

Use the `POLICY` parameters with the `ospf restart helper` command to configure certain local policies on the helper. If the configured policies are satisfied, only a router can act as helper.

Use the `never router-id all` parameter with the `no ospf restart helper` command to remove all neighbor IDs from the never router ID list.

Examples

```bash
ZebOS# configure terminal  
ZebOS(config)# ospf restart helper never router-id 1.1.1.1

ZebOS# configure terminal  
ZebOS(config)# ospf restart helper only-reload

ZebOS# configure terminal  
ZebOS(config)# ospf restart helper only-reload max-grace-period 200

ZebOS# configure terminal  
ZebOS(config)# no ospf restart helper never

ZebOS# configure terminal  
ZebOS(config)# no ospf restart helper router-id all

ZebOS# configure terminal  
ZebOS(config)# no ospf restart helper only-upgrade only-reload
```

ospf router-id

Use this command to specify a router ID for the OSPF process.

Use the `no` parameter with this command to disable this function.

Command Syntax

```bash
ospf router-id IPADDRESS  
no ospf router-id
```

IPADDRESS Specifies the router ID in IPv4 address format.
Command Mode
Router mode

Usage
Configure each router with a unique router-id. In an OSPF router process which has active neighbors, a new router-id is used at the next reload or when you start the OSPF manually.

Examples
The following example shows a specified router ID 2.3.4.5.

 ZebOS# configure terminal
 ZebOS(config)# router ospf 100
 ZebOS(config-router)# ospf router-id 2.3.4.5

Related Commands
show ip ospf

overflow database
Use this command to limit the maximum number of LSAs that can be supported by the current OSPF instance.
Use the no parameter with this command to have no limit on the maximum number of LSAs.

Command Syntax
 overflow database <0-4294967294> hard|soft
 no overflow database
 <0-0-4294967294> The maximum number of LSAs
 hard Shutdown occurs if the number of LSAs exceeds the specified value.
 soft Warning message appears if the number of LSAs exceeds the specified value.

Command Mode
Router mode

Usage
Use hard with this command if a shutdown is required if the number of LSAs exceeds the specified number. Use soft with this command if a shutdown is not required, but a warning message is required, if the number of LSAs exceeds the specified number.

Examples
The following example shows setting the database overflow to 5, and a shutdown to occur, if the number of LSAs exceeds 5.

 ZebOS# configure terminal
 ZebOS(config)# router ospf 100
 ZebOS(config-router)# overflow database 5 hard
overflow database external

Use this command to configure the size of the external database and the time the router waits before it tries to exit the overflow state.

Use the no parameter with this command to revert to default.

Command Syntax

```
overflow database external MAXLSAS RECOVERTIME
no overflow database external
```

- **MAXLSAS** = \(<0-2147483647>\) The maximum number of LSAs. Note that this value should be the same on all routers in the AS.
- **RECOVERTIME** = \(<0-65535>\) the number of seconds the router waits before trying to exit the database overflow state. If this parameter is 0, router exits the overflow state only after an explicit administrator command.

Command Mode

Router mode

Usage

Use this command to limit the number of AS-external-LSAs a router can receive, once it is in the wait state. It takes the number of seconds specified as the **RECOVERTIME** to recover from this state.

Examples

The following example shows setting the maximum number of LSAs to 5 and the time to recover from overflow state to be 3.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# overflow database external 5 3
```

passive-interface

Use this command to suppress sending Hello packets on all interfaces, or on a specified interface.

Use the no form with this command to resume sending hello packets on all interfaces, or on a specified interface.

Command Syntax

```
passive-interface (INTERFACENAME) (A.B.C.D)
```

- **INTERFACENAME** = The name of the interface.
- **A.B.C.D** = IP address of the interface.

Command Mode

Router mode

Usage

The passive-interface command is used to configure OSPF on simplex Ethernet interfaces. Since the simplex interfaces represent only one network segment between two devices, configure the transmitting interface as a passive interface. This ensures that OSPF does not send hello packets for the transmitting interface. Both the devices can see each other via the hello packet generated for the receiving interface.
Using the `passive-interface` command without the optional parameters puts all interfaces into passive mode. Using the `no passive-interface` command without the optional parameters removes all interfaces from passive mode.

Examples

```
ZebOS(config)# router ospf 100
ZebOS(config-router)# passive-interface eth0
```

redistribute

Use this command to redistribute routes from other routing protocols, static routes and kernel routes into an ospf routing table.

Use the `no` parameter with this command to disable this function.

Command Syntax

```
redistribute PROTOCOL {METRIC|METRIC-TYPE|ROUTE-MAP|TAG}
no redistribute PROTOCOL
```

- **PROTOCOL** = (bgp|isis|rip|connected|static|kernel)
 - bgp Specifies BGP routes.
 - isis Specifies IS-IS routes.
 - rip Specifies RIP routes.
 - connected Specifies connected routes.
 - static Specifies static routes.
 - kernel Specifies kernel routes.
- **METRIC** = metric <0-16777214> Specifies the external metric.
- **METRIC-TYPE** = metric-type (1|2) Specifies the external metric-type.
- **ROUTE-MAP** = route-map WORD Specifies name of the route-map.
- **TAG** = tag <0-4294967295> Specifies the external route tag.

Command Mode

Router mode

Usage

Use the `redistribute` command to inject routes, learnt from other routing protocols, into the OSPF domain to generate AS-external-LSAs.

Examples

The following example shows redistribution of bgp routes into ospf routing table, with metric as 12.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# redistribute bgp metric 12
```

redistribute ospf

Use this command to redistribute a particular OSPF instance into another OSPF instance, or optionally redistribute a particular OSPF instance into another OSPF instance by setting metrics, route maps, and tags.
Use the `no` parameter with this command to negate the distribution of a particular OSPF instance.

Command Syntax

```
redistribute ospf <1-65535> {METRIC METRIC-TYPE ROUTE-MAP TAG}
no redistribute ospf <1-65535>
    METRIC = metric <0-16777214> Specifies the external metric.
    METRIC-TYPE = metric-type (1|2) Specifies the external metric-type.
    ROUTE-MAP = route-map WORD Specifies name of the route-map.
    TAG = tag <0-4294967295> Specifies the external route tag.
```

Command Mode

Router mode

Usage

Use the `redistribute ospf` command to inject routes, learnt from other OSPF instances, into this OSPF instance to generate AS-external-LSAs.

Examples

The following example shows redistributing OSPF instance 2 into OSPF instance 1.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 1
ZebOS(config-router)# redistribute ospf 2
```

The following example shows redistributing OSPF instance 2 into OSPF instance 1, with an external metric of 10, metric type 1, a route-map named `rmp1`, and an external route tag of 3.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 1
ZebOS(config-router)# redistribute ospf 2 metric 10 metric-type 1 route-map rmp1 tag 3
```

restart ospf graceful

Use this command to force restarting OSPF as Graceful Restart.

Note: This command is available only when configuration option `--enable-restart` is enabled when compiling ZebOS.

Command Syntax

```
restart ospf graceful (grace-period <1-1800>)
```

Command Mode

Privileged Exec mode and Exec mode

Usage

After this command is executed, router immediately shuts down. It is notified to NSM that OSPF has shutdown as Graceful and NSM preserves routes installed by OSPF until grace-period expires.

Examples

```
ZebOS# restart ospf graceful grace-period 200
```
router ospf

Use this command to enter router mode and to configure an OSPF routing process. Specify the process ID with this command to configure multiple instances.

Use the `no` parameter with this command to terminate an OSPF routing process. Use the `no` parameter with the process ID parameter, to terminate and delete a specific OSPF routing process.

Command Syntax

```
(no) router ospf
(no) router ospf PROCESSID
```

```
PROCESSID = <1-65535> Any positive integer identifying a routing process. The process ID should be unique for each routing process.
```

Default

No routing process defined.

Command Mode

Configure mode

Usage

Process ID of OSPF is an optional parameter. When running a single instance of OSPF, you may or may not specify the Process ID but for running multiple instances of OSPF you must specify the Process ID.

Examples

This example shows the use of `router ospf` command to enter `router` mode. Note the change in the prompt.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)#
```

router-id

Use this command to specify a router ID for the OSPF process.

Use the `no` parameter with this command to force OSPF to use the previous OSPF router-id behavior.

Command Syntax

```
router-id IPADDRESS
no router-id
```

```
IPADDRESS Specifies the router ID in IPv4 address format.
```

Command Mode

Router mode

Usage

Configure each router with a unique router-id. In an OSPF router process that has active neighbors, a new router-id is used at the next reload or when you start the OSPF manually.
OSPF Commands

Examples

The following example shows a fixed router ID 10.10.10.60

```
ZeboS# configure terminal
ZeboS(config)# router ospf 100
ZeboS(config-router)# router-id 10.10.10.60
```

Related Commands

show ip ospf

show debugging ospf

Use this command to display the set OSPF debugging option.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show debugging ospf
```

Command Mode

Privileged Exec mode

Usage

This is a sample output from the `show debugging ospf` command. Some lines in this output wrap around, they might not wrap around in the actual display.

```
ZeboS# show debugging ospf
OSPF debugging status:
  OSPF packet Link State Update debugging is on
  OSPF all events debugging is on
ZeboS# te mo
ZeboS# 2002/05/09 14:08:11 OSPF: RECV[LS-Upd]: From 10.10.10.70 via eth0:10.10.10.50 (10.10.10.10 -> 224.0.0.5)
2002/05/09 14:08:11 OSPF: LSA[10.10.10.10:10.10.10.70]: instance(0x8139cd0) created with Link State Update
2002/05/09 14:12:33 OSPF: SEND[LS-Upd]: Begin send queue
2002/05/09 14:12:33 OSPF: SEND[LS-Upd]: # of LSAs 1, destination 224.0.0.5
2002/05/09 14:12:33 OSPF: SEND[LS-Upd]: End send queue
2002/05/09 14:12:33 OSPF: SEND[LS-Upd]: To 224.0.0.5 via eth0:10.10.10.50.
```

Examples

```
ZeboS# show debugging ospf
```

show ip ospf

Use this command to display general information about all OSPF routing processes. Include the process ID parameter with this command to display information about specified instances.
To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ip ospf
show ip ospf PROCESSID
```

`PROCESSID = <0-65535>` The ID of the router process for which information will be displayed. If this parameter is included, only the information for the specified routing process is displayed.

Command Mode

Privileged Exec mode

Usage

The following are sample outputs from the `show ip ospf` command with and without the `process ID` parameter. Notice that the first output (without process ID), shows information about both instances and the second output shows information only about the instance specified by the process ID.

```
ZebOS# show ip ospf
Routing Process "ospf 1" with ID 10.10.11.60
Process uptime is 46 minutes
Conforms to RFC2328, and RFC1583 Compatibility flag is disabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
This router is an ASBR (injecting external routing information)
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of external LSA 1. Checksum Sum 0xBC1E
Number of non-default external LSA 1
External LSA database is unlimited.
Number of areas attached to this router: 1
  Area 0 (BACKBONE)
    Number of interfaces in this area is 1(1)
    Number of fully adjacent neighbors in this area is 1
    Area has no authentication
    SPF algorithm last executed 00:46:27.935 ago
    SPF algorithm executed 2 times
    Number of LSA 5. Checksum Sum 0x026a20

Routing Process "ospf 100" with ID 10.10.11.146
Process uptime is 0 minute
Conforms to RFC2328, and RFC1583 Compatibility flag is disabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of external LSA 0. Checksum Sum 0x0
Number of non-default external LSA 0
External LSA database is unlimited.
Number of areas attached to this router: 1
  Area 1
```
Number of interfaces in this area is 1(1)
Number of fully adjacent neighbors in this area is 0
Number of fully adjacent virtual neighbors through this area is 0
Area has no authentication
SPF algorithm executed 0 times
Number of LSA 1. Checksum Sum 0x00e3e2

ZebOS# show ip ospf 100
Routing Process "ospf 100" with ID 10.10.11.146
Process uptime is 0 minute
Conforms to RFC2328, and RFC1583 Compatibility flag is disabled
Supports only single TOS (TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of external LSA 0. Checksum Sum 0x0
Number of non-default external LSA 0
External LSA database is unlimited.
Number of areas attached to this router: 1
 Area 1
 Number of interfaces in this area is 1(1)
 Number of fully adjacent neighbors in this area is 0
 Number of fully adjacent virtual neighbors through this area is 0
 Area has no authentication
 SPF algorithm executed 0 times
 Number of LSA 1. Checksum Sum 0x00e3e2

Examples
 ZebOS# show ip ospf
 ZebOS# show ip ospf 100

Related Commands
 router ospf

show ip ospf multi-area-adjacencies

Use this command to display multi-area adjacency information for all OSPF instances, or for a particular OSPF instance.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax
 show ip ospf (<0-65535>) multi-area-adjacencies

<0-65535> OSPF instance ID

Command Mode
 Privileged Exec mode and Exec mode

Example
 ZebOS# show ip ospf 1 multi-area-adjacencies
Usage

The following is a sample output of this command:

```
Multi-area-adjacency on interface eth1 to neighbor 20.20.20.10
Internet Address 20.20.20.11/24, Area 0.0.0.1, MTU 1500
Process ID 1, Router ID 10.10.10.10, Network Type POINTOPOINT, Cost: 10
Transmit Delay is 1 sec, State Point-To-Point
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:02
Neighbor Count is 0, Adjacent neighbor count is 0
Crypt Sequence Number is 1229928206
    Hello received 0 sent 513, DD received 0 sent 0
    LS-Req received 0 sent 0, LS-Upd received 0 sent 0
    LS-Ack received 0 sent 0, Discarded 0
```

show ip ospf border-routers

Use this command to display the ABRs and ASBRs for all OSPF instances. Include the process ID parameter with this command to view data about specified instances.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ip ospf border-routers
show ip ospf PROCESSID border-routers
```

```
PROCESSID = <0-65535> The ID of the router process for which information will be displayed.
```

Command Mode

Privileged Exec mode

Usage

This is a sample output from the `show ip ospf border-routers` command.

Examples

```
ZebOS# show ip ospf border-routers
OSPF process 1 internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 10.15.0.1 [10] via 10.10.0.1, eth0, ASBR, Area 0.0.0.0
i 172.16.10.1 [10] via 10.10.15.50, eth1, ABR, ASBR, Area 0.0.0.0
```

show ip ospf database

Use this command to display a database summary for OSPF information. This command displays BGP tags for prefixes. Include the process ID parameter with this command to display information about specified instances.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.
Command Syntax

```
show ip ospf database(self-originate|max-age)
show ip ospf PROCESSID database (self-originate|max-age)
```

- **PROCESSID = <0-65535>** The ID of the router process for which information will be displayed.
- **self-originate** Displays self-originated link states.
- **max-age** Displays LSAs in MaxAge list. It maintains the list of all LSAs in the database which have reached the max-age which is 3600 seconds.

Command Mode

Privileged Exec mode

Usage

The following are sample outputs from the `show ip ospf database` command with and without the `process ID` parameter. Notice that the first output (without process ID), shows database information about both the instances and the second and third outputs show database information only about the instances specified by the process ID. The last two displays show the use of the `self-originate` and `max-age` parameters.

ZebOS# `show ip ospf database`

```
OSPF Router process 1 with ID (10.10.11.60)

Router Link States (Area 0.0.0.1)

Link ID     ADV Router    Age  Seq#       CkSum  Link count
10.10.11.60 10.10.11.60   32   0x80000002 0x472b 1
```

ZebOS# `show ip ospf 1 database`

```
OSPF Router process 1 with ID (10.10.11.60)

Router Link States (Area 0.0.0.1)

Link ID     ADV Router    Age  Seq#       CkSum  Link count
10.10.11.60 10.10.11.60   43   0x80000002 0x472b 1
```

ZebOS# `show ip ospf 100 database`

```
OSPF Router process 100 with ID (10.10.11.60)

Router Link States (Area 0.0.0.0)

Link ID     ADV Router    Age  Seq#       CkSum  Link count
10.10.11.60 10.10.11.60   219  0x80000001 0x4f5d 0
```

ZebOS# `show ip ospf 100 database`

```
OSPF Router process 100 with ID (10.10.11.60)

Router Link States (Area 0.0.0.0)

Link ID     ADV Router    Age  Seq#       CkSum  Link count
10.10.11.60 10.10.11.60   43   0x80000002 0x472b 1
```
ZebOS# **show ip ospf database self-originate**

OSPF Router process 100 with ID (10.10.11.50)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>CkSum</th>
<th>Link count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.11.50</td>
<td>10.10.11.50</td>
<td>20</td>
<td>0x80000007</td>
<td>0x65c3</td>
<td>2</td>
</tr>
</tbody>
</table>

Area-Local Opaque-LSA (Area 0.0.0.1 [NSSA])

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>CkSum</th>
<th>Opaque ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.1.4.217</td>
<td>10.10.11.50</td>
<td>37</td>
<td>0x80000001</td>
<td>0x2129</td>
<td>66777</td>
</tr>
</tbody>
</table>

AS-Global Opaque-LSA

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>CkSum</th>
<th>Opaque ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.1.4.217</td>
<td>10.10.11.50</td>
<td>37</td>
<td>0x80000001</td>
<td>0x2daa</td>
<td>66777</td>
</tr>
</tbody>
</table>

ZebOS# **show ip ospf database max-age**

OSPF Router process 100 with ID (3.3.3.4)

MaxAge Link States:

- Link type: 7
- Link State ID: 37.37.37.0
- Advertising Router: 3.3.3.1
- LSA lock count: 6

- Link type: 7
- Link State ID: 10.0.0.0
- Advertising Router: 3.3.3.1
- LSA lock count: 6

Examples

- ZebOS# show ip ospf database external 1.2.3.4 self-originate
- ZebOS# show ip ospf database self-originate
- ZebOS# show ip 1 ospf database max-age
- ZebOS# show ip 100 ospf database router adv-router 2.3.4.5

show ip ospf database asbr-summary

Use this command to display information about the Autonomous System Boundary Router (ASBR) summary LSAs.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show ip ospf database asbr-summary (A.B.C.D)(self-originate|ADVROUTER)
ADVROUTER = adv-router A.B.C.D
adv-router Displays all the LSAs of the specified router.
A.B.C.D A link state ID (as an IP address).
self-originate Displays self-originated link states.
```
Command Mode

Privileged Exec mode

Examples

```
ZebOS# show ip ospf database asbr-summary 1.2.3.4 self-originate
ZebOS# show ip ospf database asbr-summary self-originate
ZebOS# show ip ospf database asbr-summary 1.2.3.4 adv-router 2.3.4.5
```

show ip ospf database external

Use this command to display information about the external LSAs.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show ip ospf database external (A.B.C.D)(self-originate|ADVROUTER)

ADVROUTER = adv-router A.B.C.D
adv-router  Displays all the LSAs of the specified router.
A.B.C.D  A link state ID (as an IP address).
sel-originated  Displays self-originated link states.
```

Command Mode

Privileged Exec mode

Usage

This is a sample output from the show ip ospf database external command with the self-originate option selected.

```
ZebOS# show ip ospf database external self-originate

OSPF Router process 100 with ID (10.10.11.50)

AS External Link States
LS age: 298
Options: 0x2 (*|-|-|-|-|E|-)
LS Type: AS-external-LSA
Link State ID: 10.10.100.0 (External Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x7033
Length: 36
Network Mask: /24
Metric Type: 2 (Larger than any link state path)
TOS: 0
Metric: 20
Forward Address: 10.10.11.50
External Route Tag: 0
```
Examples

ZebOS# show ip ospf database external 1.2.3.4 self-originate
ZebOS# show ip ospf database external self-originate
ZebOS# show ip ospf database external 1.2.3.4 adv-router 2.3.4.5

show ip ospf database network

Use this command to display information about the network LSAs.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

show ip ospf database network (A.B.C.D)(self-originate|ADVROUTER)

ADVROUTER = adv-router A.B.C.D
adv-router Displays all the LSAs of the specified router.
A.B.C.D A link state ID (as an IP address).
self-originate Displays self-originated link states.

Command Mode

Privileged Exec mode

Usage

The following is a sample output from the show ip ospf database network command, with and without the adv-router option selected:

ZebOS# show ip ospf database network
OSPF Router process 200 with ID (192.30.30.2)
Net Link States (Area 0.0.0.0)
LS age: 1175
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.10.10.9 (address of Designated Router)
Advertising Router: 192.30.30.3
LS Seq Number: 80000002
Checksum: 0xdfb1
Length: 32
Network Mask: /24
Attached Router: 192.20.20.1
Attached Router: 192.30.30.3
LS age: 1327
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.20.20.2 (address of Designated Router)
Advertising Router: 192.20.20.2
LS Seq Number: 8000000d
Checksum: 0xbce6
Length: 32
Network Mask: /24
Attached Router: 192.20.20.1
Attached Router: 192.20.20.2
LS age: 1278
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.30.30.3 (address of Designated Router)
Advertising Router: 192.30.30.3
Advertising Router: 192.30.30.3
LS Seq Number: 80000001
Checksum: 0x0556
Length: 32
Network Mask: /24
 Attached Router: 192.30.30.2
 Attached Router: 192.30.30.3
LS age: 1436
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.40.40.2 (address of Designated Router)
Advertising Router: 192.20.20.2
LS Seq Number: 8000000e
Checksum: 0xf173
Length: 32
Network Mask: /24
 Attached Router: 192.20.20.2
 Attached Router: 192.30.30.2

ZebOS# show ip ospf database network adv-router 192.30.30.3
OSPF Router process 200 with ID (192.30.30.2)
Net Link States (Area 0.0.0.0)
LS age: 1387
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.10.10.9 (address of Designated Router)
Advertising Router: 192.30.30.3
LS Seq Number: 80000001
Checksum: 0xe1b0
Length: 32
Network Mask: /24
 Attached Router: 192.20.20.1
 Attached Router: 192.30.30.3
LS age: 1648
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.30.30.3 (address of Designated Router)
Advertising Router: 192.30.30.3
LS Seq Number: 8000000f
Checksum: 0xe864
Length: 32
Network Mask: /24
 Attached Router: 192.30.30.2
 Attached Router: 192.30.30.3
Examples

ZebOS# show ip ospf database network 1.2.3.4 self-originate
ZebOS# show ip ospf database network self-originate
ZebOS# show ip ospf database network 1.2.3.4 adv-router 2.3.4.5

show ip ospf database nssa-external

Use this command to display information about the NSSA external LSAs.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

show ip ospf database nssa-external (A.B.C.D) (self-originate|ADVROUTER)

ADVROUTER = adv-router A.B.C.D
adv-router Displays all the LSAs of the specified router.
A.B.C.D A link state ID (as an IP address).
self-originate Displays self-originated link states.

Command Mode

Privileged Exec mode

Usage

The following is a sample output from the show ip ospf database nssa-external command with the adv-router and ip address option selected.

ZebOS# show ip ospf database nssa-external adv-router 10.10.11.50
OSPF Router process 100 with ID (10.10.11.50)
NSSA-external Link States (Area 0.0.0.0)
NSSA-external Link States (Area 0.0.0.1 [NSSA])
LS age: 78
Options: 0x0 (*|-|-|-|-|-|-|-|
LS Type: AS-NSSA-LSA
Link State ID: 0.0.0.0 (External Network Number For NSSA)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0xc9b6
Length: 36
Network Mask: /0
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 1
 NSSA: Forward Address: 0.0.0.0
--More--
OSPF Router process 100 with ID (10.10.11.50)
 NSSA-external Link States (Area 0.0.0.0)
 NSSA-external Link States (Area 0.0.0.1 [NSSA])
LS age: 78
Options: 0x0 (*|-|-|-|-|-|-|-|
LS Type: AS-NSSA-LSA
Link State ID: 0.0.0.0 (External Network Number For NSSA)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0xc9b6
Length: 36
Network Mask: /0
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 1
 NSSA: Forward Address: 0.0.0.0
 External Route Tag: 0
 NSSA-external Link States (Area 0.0.0.1 [NSSA])

Examples
ZebOS# show ip ospf database nssa-external 1.2.3.4 self-originate
ZebOS# show ip ospf database nssa-external self-originate
ZebOS# show ip ospf database nssa-external 1.2.3.4 adv-router 2.3.4.5

show ip ospf database opaque-area

Use this command to display information about the area-local (link state type 10) scope LSAs. Type-10 Opaque LSAs are not flooded beyond the borders of their associated area.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax
show ip ospf database opaque-area (A.B.C.D)(self-originate|ADVROUTER)
 ADVROUTER = adv-router A.B.C.D
 adv-router Displays all the LSAs of the specified router.
 A.B.C.D A link state ID (as an IP address).
 self-originate Displays self-originated link states.

Command Mode
Privileged Exec mode

Usage
The following is a sample output from the show ip ospf database opaque-area command, with the self-originate option selected.
ZebOS# show ip ospf database opaque-area self-originate
OSPF Router process 100 with ID (10.10.11.50)
 Area-Local Opaque-LSA (Area 0.0.0.0)
 LS age: 262
 Options: 0x2 (*|*-|*-|*-|*-|E*-
 LS Type: Area-Local Opaque-LSA
 Link State ID: 10.0.25.176 (Area-Local Opaque-Type/ID)
 Opaque Type: 10
 Opaque ID: 6576
 Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0xb413
Length: 26

Examples
ZebOS# show ip ospf database opaque-area 1.2.3.4 self-originate
ZebOS# show ip ospf database opaque-area self-originate
ZebOS# show ip ospf database opaque-area 1.2.3.4 adv-router 2.3.4.5

show ip ospf database opaque-as

Use this command to display information about the link-state type 11 LSAs. This type of link-state denotes that the LSA is flooded throughout the Autonomous System (AS).

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show ip ospf database opaque-as (A.B.C.D)(self-originate|ADVROUTER)

 ADVROUTER = adv-router A.B.C.D
 adv-router Displays all the LSAs of the specified router.
 A.B.C.D A link state ID (as an IP address).
 self-originate Displays self-originated link states.

Command Mode
Privileged Exec mode

Usage
The following is a sample output from the show ip ospf database opaque-as command, with the self-originate option selected.

ZebOS# show ip ospf database opaque-as self-originate
OSPF Router process 100 with ID (10.10.11.50)
AS-Global Opaque-LSA
LS age: 325
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: AS-external Opaque-LSA
Link State ID: 11.10.9.23 (AS-external Opaque-Type/ID)
Opaque Type: 11
Opaque ID: 657687
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0xb018
Length: 25

Examples
ZebOS# show ip ospf database opaque-as 1.2.3.4 self-originate
ZebOS# show ip ospf database opaque-as self-originate
ZebOS# show ip ospf database opaque-as 1.2.3.4 adv-router 2.3.4.5
show ip ospf database opaque-link

Use this command to display information about the link-state type 9 LSAs. This type denotes a link-local scope. The LSAs are not flooded beyond the local network.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show ip ospf database opaque-link (A.B.C.D)(self-originate|ADVROUTER)
```

- **ADVROUTER = adv-router A.B.C.D**
 - `adv-router` Displays all the LSAs of the specified router.
 - `A.B.C.D` A link state ID (as an IP address).
- **self-originate** Displays self-originated link states.

Command Mode

Privileged Exec mode

Usage

The following is a sample output from the `show ip ospf database opaque-link` command, with a link-state selected.

```
ZebOS# show ip ospf database opaque-link 10.0.220.247

OSPF Router process 100 with ID (10.10.11.50)

   Link-Local Opaque-LSA (Link hme0:10.10.10.50)
   LS age: 276
   Options: 0x2 (*|-|-|-|-|-|-|E|-
   LS Type: Link-Local Opaque-LSA
   Link State ID: 10.0.220.247 (Link-Local Opaque-Type/ID)
   Opaque Type: 10
   Opaque ID: 56567
   Advertising Router: 10.10.11.50
   LS Seq Number: 80000001
   Checksum: 0x744e
   Length: 26

   Link-Local Opaque-LSA (Link hme1:10.10.11.50)
```

Examples

```
ZebOS# show ip ospf database opaque-link 1.2.3.4 self-originate
ZebOS# show ip ospf database opaque-link self-originate
ZebOS# show ip ospf database opaque-link 1.2.3.4 adv-router 2.3.4.5
```

show ip ospf database router

Use this command to display information only about the router LSAs.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.
Command Syntax

```
show ip ospf database router (A.B.C.D)(self-originate|ADVROUTER)
```

- **ADVROUTER** = adv-router A.B.C.D
- **adv-router** Displays all the LSAs of the specified router.
- **A.B.C.D** A link state ID (as an IP address).
- **self-originate** Displays self-originated link states.

Command Mode

Privileged Exec mode

Usage

The following is a sample output from the `show ip ospf database router` command, with the ip address selected.

```
ZebOS# show ip ospf database router 10.10.11.50

OSPF Router process 100 with ID (10.10.11.50)

    Router Link States (Area 0.0.0.0)
    LS age: 878
    Options: 0x2 (*|--|--|--|--|--|E|--)
    Flags: 0x3 : ABR ASBR
    LS Type: router-LSA
    Link State ID: 10.10.11.50
    Advertising Router: 10.10.11.50
    LS Seq Number: 80000004
    Checksum: 0xe39e
    Length: 36
    Number of Links: 1
      Link connected to: Stub Network
        (Link ID) Network/subnet number: 10.10.10.0
        (Link Data) Network Mask: 255.255.255.0
    Number of TOS metrics: 0
    TOS 0 Metric: 10

    Router Link States (Area 0.0.0.1)
    LS age: 877
    Options: 0x2 (*|--|--|--|--|--|E|--)
    Flags: 0x3 : ABR ASBR
    LS Type: router-LSA
    Link State ID: 10.10.11.50
    Advertising Router: 10.10.11.50
    LS Seq Number: 80000003
    Checksum: 0xe93
    Length: 36
    Number of Links: 1
      Link connected to: Stub Network
        (Link ID) Network/subnet number: 10.10.11.0
        (Link Data) Network Mask: 255.255.255.0
```
Number of TOS metrics: 0
TOS 0 Metric: 10

Examples

ZebOS# show ip ospf database router 1.2.3.4 self-originate
ZebOS# show ip ospf database router self-originate
ZebOS# show ip ospf database router 1.2.3.4 adv-router 2.3.4.5

show ip ospf database summary

Use this command to display information about the summary LSAs.
To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection
token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

show ip ospf database summary (A.B.C.D)(self-originate|ADVROUTER)

ADVRUTER = adv-router A.B.C.D
adv-router Displays all the LSAs of the specified router.
A.B.C.D A link state ID (as an IP address).
sel-originate Displays self-originated link states.

Command Mode
Privileged Exec mode

Usage
The following are the sample outputs from the show ip ospf database summary command, using the self-
originate, adv-router and ip address options.

ZebOS# show ip ospf database summary 10.10.10.0
OSPF Router process 100 with ID (10.10.11.50)
Summary Link States (Area 0.0.0.0)
Summary Link States (Area 0.0.0.1)
LS age: 1124
Options: 0x2 (+|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.10.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x41a2
Length: 28
Network Mask: /24
TOS: 0 Metric: 10

ZebOS# show ip ospf database summary self-originate
OSPF Router process 100 with ID (10.10.11.50)
Summary Link States (Area 0.0.0.0)
LS age: 1061
Options: 0x2 (+|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.11.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x36ac
Length: 28
Network Mask: /24
 TOS: 0 Metric: 10
 Summary Link States (Area 0.0.0.1)
LS age: 1061
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.11.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x36ac
Length: 28
Network Mask: /24
 TOS: 0 Metric: 10
 Summary Link States (Area 0.0.0.1)
LS age: 1061
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.11.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x41a2
Length: 28
Network Mask: /24
 TOS: 0 Metric: 10
ZebOS# show ip ospf database summary adv-router 10.10.11.50

OSPF Router process 100 with ID (10.10.11.50)
 Summary Link States (Area 0.0.0.0)
LS age: 989
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.11.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x36ac
Length: 28
Network Mask: /24
 TOS: 0 Metric: 10
 Summary Link States (Area 0.0.0.1)
LS age: 989
Options: 0x2 (*|-|-|-|-|-|E|-)
LS Type: summary-LSA
Link State ID: 10.10.11.0 (summary Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 80000001
Checksum: 0x36ac
OSPF Commands

Length: 28
Network Mask: /24
 TOS: 0 Metric: 10

Examples
ZebOS# show ip ospf database summary 1.2.3.4 self-originate
ZebOS# show ip ospf database summary self-originate
ZebOS# show ip ospf database summary 1.2.3.4 adv-router 2.3.4.5

show ip ospf igp-shortcut-lsp

Use this command to show the IGP Shortcut LSP used by OSPF.

Command Syntax
 show ip ospf igp-shortcut-lsp

Command Mode
Exec mode

Example
ZebOS# show ip ospf igp-shortcut-lsp
 Tunnel-endpoint Tunnel-id Tunnel-metric
 8.8.8.8 101 2

show ip ospf igp-shortcut-route

Use this command to show the IGP Shortcut route calculated by OSPF.

Command Syntax
 show ip ospf igp-shortcut-route

Command Mode
Exec mode

Example
ZebOS# show ip ospf igp-shortcut-route
 OSPF process 0:
 15.15.15.15/32 [0] tunnel-id: 101, 8.8.8.8
 20.20.15.0/24 [0] tunnel-id: 101, 8.8.8.8

show ip ospf interface

Use this command to display interface information for OSPF.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.
OSPF Commands

Command Syntax

```
show ip ospf interface IFNAME
```

IFNAME An alphanumeric string that is the interface name.

Command Mode

Privileged Exec mode and Exec mode

Usage

The following is a sample output of this command:

```
ZebOS# show ip ospf interface eth1
eth1 is up, line protocol is up
  Internet Address 1.1.1.1/24, Area 0.0.0.0, MTU 1500
  Process ID 0, Router ID 33.33.33.33, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State Waiting, Priority 1, TE Metric 0
  No designated router on this network
  No backup designated router on this network
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:02
  Neighbor Count is 0, Adjacent neighbor count is 0
  Crypt Sequence Number is 1106347721
  Hello received 0 sent 1, DD received 0 sent 0
  LS-Req received 0 sent 0, LS-Upd received 0 sent 0
  LS-Ack received 0 sent 0, Discarded 0
```

Examples

```
ZebOS# show ip ospf interface eth0
```

show ip ospf neighbor

Use this command to display information on OSPF neighbors. Include the process ID parameter with this command to display information about specified instances.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ip ospf neighbor A.B.C.D|all|DETAIL|INTERFACE
show ip ospf PROCESSID neighbor A.B.C.D|all|DETAIL|INTERFACE
```

PROCESSID = <0-65535> The ID of the router process for which information will be displayed.

A.B.C.D = A.B.C.D (detail) Neighbor ID.

all = Include downstatus neighbor

DETAIL = detail (all) Detail of all neighbors

INTERFACE = Interface (A.B.C.D)

A.B.C.D = Address of the interface

Command Mode

Privileged Exec mode and Exec mode

OSPF Commands

Usage

The following are sample outputs from the `show ip ospf neighbor` command with and without the process ID parameter. Notice that the first output (without process ID), shows database information about both the instances and the second output shows database information only about the instance specified by the process ID. The last display shows the use of the `detail` parameter.

ZebOS# show ip ospf neighbor

OSPF process 1:
Neighbor ID Pri State Dead Time Address Interface
10.10.10.50 1 Full/DR 00:00:38 10.10.10.50 eth0

OSPF process 100:
Neighbor ID Pri State Dead Time Address Interface
10.10.11.50 1 Full/Backup 00:00:31 10.10.11.50 eth1

ZebOS#show ip ospf 1 neighbor

OSPF process 1:
Neighbor ID Pri State Dead Time Address Interface
10.10.10.50 1 Full/DR 00:00:38 10.10.10.50 eth0

ZebOS# show ip ospf 100 neighbor

OSPF process 100:
Neighbor ID Pri State Dead Time Address Interface
10.10.11.50 1 Full/Backup 00:00:31 10.10.11.50 eth1

ZebOS# show ip ospf neighbor detail

Neighbor 10.10.10.50, interface address 10.10.10.50
In the area 0.0.0.0 via interface eth0
Neighbor priority is 1, State is Full, 5 state changes
DR is 10.10.10.50, BDR is 10.10.10.10
Options is 0x42 (*|O|-|-|-|-|E|-)
Dead timer due in 00:00:38
Neighbor is up for 00:53:07
Database Summary List 0
Link State Request List 0
Link State Retransmission List 0
Crypt Sequence Number is 0
Thread Inactivity Timer on
Thread Database Description Retransmission off
Thread Link State Request Retransmission off
Thread Link State Update Retransmission on

Neighbor 10.10.11.50, interface address 10.10.11.50
In the area 0.0.0.0 via interface eth1
Neighbor priority is 1, State is Full, 5 state changes
DR is 10.10.11.10, BDR is 10.10.11.50
Options is 0x42 (*|O|-|-|-|-|E|-)
Dead timer due in 00:00:31
Neighbor is up for 00:26:50
Database Summary List 0
Link State Request List 0
Link State Retransmission List 0
Crypt Sequence Number is 0
Thread Inactivity Timer on
Thread Database Description Retransmission off
Thread Link State Request Retransmission off
Thread Link State Update Retransmission on

Examples
ZebOS# show ip ospf neighbor detail
ZebOS# show ip ospf neighbor 1.2.3.4
ZebOS# show ip ospf neighbor myifname detail all

show ip ospf route

Use this command to display the OSPF routing table. Include the process ID parameter with this command to display the OSPF routing table for specified instances.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ip ospf route
show ip ospf PROCESSID route
```

PROCESSID = <0-65535> The ID of the router process for which information will be displayed. If this parameter is included, only the information for this specified routing process is displayed.

Command Mode

Privileged Exec mode

Usage

The following is a sample output from the show ip ospf route command.

ZebOS# show ip ospf route
OSPF process 10:
Codes: C - connected, D - Discard, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
C 50.0.0.0/24 [10] is directly connected, eth1, Area 0.0.0.10
C 60.0.0.0/24 [10] is directly connected, eth3, Area 0.0.0.10
OSPF process 15:
Codes: C - connected, D - Discard, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
C 80.0.0.0/24 [1] is directly connected, eth4, Area 0.0.0.15

The following is a sample output from the show ip ospf route command with the PROCESSID parameter.

ZebOS# show ip ospf 10 route
OSPF Commands

OSPF process 10:

Codes: C - connected, D - Discard, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2

C 50.0.0.0/24 [10] is directly connected, eth1, Area 0.0.0.10
C 60.0.0.0/24 [10] is directly connected, eth3, Area 0.0.0.10

Examples

ZebOS# show ip ospf route

show ip ospf virtual-links

Use this command to display virtual link information.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show ip ospf virtual-links

Command Mode

Privileged Exec mode and Exec mode

Usage

The following is the display of the virtual link information for two routers, one with the virtual link up and one with virtual link down.

ospfd# show ip ospf virtual-links
Virtual Link VLINK0 to router 10.10.0.9 is up
 Transit area 0.0.0.1 via interface eth0
 Transmit Delay is 1 sec, State Point-To-Point,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:02
 Adjacency state Full
Virtual Link VLINK1 to router 10.10.0.123 is down
 Transit area 0.0.0.1 via interface *
 Transmit Delay is 1 sec, State Down,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in inactive
 Adjacency state Down

Examples

ZebOS# show ip ospf virtual-links

show ip protocols

Use this command to display OSPF process parameters and statistics.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.
Command Syntax

`show ip protocols`

There are no arguments or keywords for this command.

Command Mode

Privileged Exec mode

Usage

This is an example of the output from the `show ip protocols` command:

```
ZebOS# show ip protocols
Routing Protocol is "ospf 200"
   Invalid after 0 seconds, hold down 0, flushed after 0
   Outgoing update filter list for all interfaces is
      Redistributed kernel filtered by filter1
   Incoming update filter list for all interfaces is
   Redistributing: kernel
Routing for Networks:
   192.30.30.0/24
   192.40.40.0/24
Routing Information Sources:
   Gateway         Distance      Last Update
   Distance: (default is 110)
   Address         Mask            Distance List
```

Examples

```
ZebOS# show ip protocols
```

summary-address

Use this command to summarize or suppress external routes with the specified address range.

Command Syntax

`summary-address A.B.C.D/M (not-advertise)(tag <0-4294967295>)`

- `A.B.C.D/M` = The range of addresses given as IPv4 starting address and a mask indicating the range.
- `not-advertise` Suppresses external routes.
- `tag <0-4294967295>` The default tag value is 0.

Command Mode

Router mode

Usage

An address range is a pairing of an address and a mask that is almost the same as IP network number. For example, if the specified address range is 192.168.0.0/255.255.240.0, it matches: 192.168.1.0/24, 192.168.4.0/22, 192.168.8.128/25 and so on.

Redistributing routes from other protocols into OSPF requires the router to advertise each route individually in an external LSA. Use `summary address` command to advertise one summary route for all redistributed routes covered by a specified network address and mask. This helps decrease the size of the OSPF link state database.
Examples

The following example uses the `summary-address` command to aggregate external LSAs that match the network 172.16.0.0/24 and assign a Tag value of 3.

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# summary-address 172.16.0.0/16 tag 3
```

te-metric

This command sets traffic engineering metric for an interface.

Use the `no` parameter with this command to unset traffic engineering metric for this interface

Command Syntax

```
(no) te-metric <1-65535>
```

`<1-65535>` The te-metric value. The default value is 0.

Command Mode

Interface mode

Usage

The te-metric is used in OSPF-TE Link State Advertisements. If the te-metric value is not set, `ospf cost` value for an interface is used in TE LSA.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# te-metric 6
```

Related Commands

capability te

timers spf

Use this command to adjust route-calculation timers.

Use the `no` parameter with this command to return to the default timer values.

Command Syntax

```
timers spf SPF-DELAY SPF-HOLDTIME
no timers spf SPF-DELAY SPF-HOLDTIME
```

`SPF-DELAY= <0-2147483647>` Specifies the delay between receiving a change to SPF calculation. The default `spf-delay` value is 5 seconds

`SPF-HOLDTIME= <0-2147483647>` Specifies hold time between consecutive SPF calculations. The default `spf-holdtime` value is 10 seconds.
Usage

The `timer spf` command configures the delay time between the receipt of a topology change and the calculation of the Shortest Path First (SPF). This command also configures the hold time between two consecutive SPF calculations.

Examples

```plaintext
    timers spf 5 10
```

timers spf exp

Use this command to adjust route-calculation timers using exponential back-off delays.

Use the `no` parameter with this command to return to the default exponential back-off timer values.

Command Syntax

```plaintext
    timers spf exp MIN_HOLDTIME MAX_HOLDTIME
    no timers spf exp
```

- **MIN_HOLDTIME** = `<0-2147483647>` Specifies the minimum delay between receiving a change to SPF calculation in milliseconds. The default SPF minimum hold-time delay value is 50 milliseconds.
- **MAX_HOLDTIME** = `<0-2147483647>` Specifies the maximum delay between receiving a change to SPF calculation in milliseconds. The default SPF maximum hold-time delay value is 50 seconds.

Command Mode

Router mode

Usage

The `timers spf exp` command configures the minimum and maximum delay time between the receipt of a topology change and the calculation of the Shortest Path First (SPF).

Examples

```plaintext
    ZebOS# configure terminal
    ZebOS(config)# router ospf 100
    ZebOS(config-router)# timers spf exp 5 10
```

undebug ospf events

Use this command to disable debugging options for OSPF event troubleshooting. Use this command without parameters to disable all the options.

Command Syntax

```plaintext
    undebug ospf event (abr|asbr|lsa|nssa|os|router|vlink)
```

- **abr** disables debugging of ABR events
- **asbr** disables debugging of ASBR events
- **lsa** disables debugging of LSA events
- **nssa** disables debugging of NSSA events
- **os** disables debugging of OS interaction events
- **router** disables debugging of other router events
- **vlink** disables debugging of virtual link events
OSPF Commands

Command Mode
Privileged Exec mode

Examples

ZebOS# undebug ospf event abr

undebug ospf ifsm

Use this command to disable debugging options for OSPF Interface Finite State Machine (IFSM) troubleshooting.

Command Syntax

```
undebug ospf ifsm (status|events|timers)
```

- **events** Disables debugging of IFSM event information
- **status** Disables debugging of IFSM status information
- **timers** Disables debugging of IFSM timer information

Command Mode
Privileged Exec mode

Examples

ZebOS# undebug ospf ifsm events

undebug ospf lsa

Use this command to disable debugging options for OSPF Link State Advertisements (LSA) troubleshooting.

Command Syntax

```
undebug ospf lsa (generate|flooding|install|maxage|refresh)
```

- **generate** Disables debugging of the LSA generation.
- **flooding** Disables debugging of the LSA flooding.
- **install** Disables debugging of the LSA installation.
- **maxage** Disables debugging of maximum age of the LSA in seconds.
- **refresh** Disables debugging of LSA refresh.

Command Mode
Privileged Exec mode

Examples

ZebOS# undebug ospf lsa refresh

undebug ospf nfsm

Use this command to disable the debugging options for OSPF Neighbor Finite State Machines (NFSMs).

Command Syntax

```
undebug ospf nfsm (status|events|timers)
```
status Disable the logging of NFSM status information.

events Disable the logging of NFSM event information.

timers Disable the logging of NFSM timer information.

Command Mode
Privileged Exec mode

Examples
ZebOS# undebug ospf nfsm events

undebug ospf nsms
Use this command to disable debugging options for OSPF NSM information.

Command Syntax
undebug ospf nsms (interface|redistribute)

 - **interface** Disable logging of NSM interface information.
 - **redistribute** Disable logging of NSM redistribute information.

Command Mode
Privileged Exec mode

Usage
ZebOS# undebug ospf nsms interface

undebug ospf packet
Use this command to disable debugging options for OSPF packets.

Command Syntax
undebug ospf packet PARAMETERS

 - **PARAMETERS** = dd|detail|hello|ls-ack|ls-request|ls-update|recv|detail
 - **dd** Disable debugging for OSPF database descriptions.
 - **detail** Disable the setting of the debug option set to detailed information.
 - **hello** Disable debugging for OSPF hello packets.
 - **ls-ack** Disable debugging for OSPF link state acknowledgments.
 - **ls-request** Disable debugging for OSPF link state requests.
 - **ls-update** Disable debugging for OSPF link state updates.
 - **send** Disable the debug option set for sent packets.
 - **recv** Disable the debug option set for received packets.

Command Mode
Privileged Exec mode

Examples
ZebOS# undebug ospf packet ls-request recv detail
undebug ospf route

Use this command to disable route calculation for OSPF debugging. Use this command without parameters to disable all the options.

Command Syntax

```
undebug ospf route (ase|ia|install|spf)
  ia   Disable the debugging of Inter-Area route calculation
  ase  Disable the debugging of external route calculation
  install  Disable the debugging of route installation
  spf   Disable the debugging of SPF calculation
```

Command Mode

Privileged Exec mode

Examples

```
ZebOS# undebug ospf route install
```
This chapter provides an alphabetized reference for each of the OSPFv3 commands.

abr-type

Use this command to set an OSPFv3 Area Border Router (ABR) type. Use the `no` parameter with this command to disable this function.

Command Syntax

```
abr-type cisco|ibm|standard
```

```
no abr-type (cisco|ibm)
```

- **cisco** Specifies an alternative ABR using Cisco implementation (RFC 3509). This is the default ABR type.
- **ibm** Specifies an alternative ABR using IBM implementation (RFC 3509).
- **standard** Specifies a standard behavior ABR (RFC 2328).

Default

ABR type Cisco

Command Mode

Router mode

Usage

Specifying the ABR type allows better functioning between different implementations. This command is specially useful in a multi-vendor environment. The different ABR types are:

- **Cisco ABR Type:** By this definition, a router is considered an ABR if it has more than one area actively attached and one of them is the backbone area.
- **Standard ABR Type:** By this definition, a router is considered an ABR if it has more than one area actively attached to it.
- **IBM ABR Type:** By this definition, a router is considered an ABR if it has more than one area actively attached and the backbone area is configured. In this case the configured backbone need not be actively connected.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# abr-type standard
```

area default-cost

Use this command to specify the cost for default summary route sent into a stub area. Use the `no` parameter with this command to remove the assigned default cost.

Command Syntax

```
area AREAID default-cost <0-16777215>
```
no area AREAID default-cost

AREAID = A.B.C.D|<0-4294967295>

- **A.B.C.D** OSPF Area ID in IPv4 address format.
- **<0-4294967295>** OSPF Area ID as a 4 octets unsigned integer value.
- **<0-16777215>** Indicates the cost for the default summary route used for a stub area. Default default-cost value is 1.

Command mode

Router mode

Usage

If an area is configured as a stub, the OSPFv3 router originates one type-3 inter-area-prefix-LSA into the stub area. This command changes the metric for this LSA.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router) area 1 default-cost 10
```

Related Commands

area stub, area no-summary

area range

Use this command to configure the OSPFv3 IPv6 address range.

Use the `no` parameter with this command to remove the assigned area range.

Command Syntax

```
(no) area AREAID range X:X::X:X/M (advertise | not-advertise)
```

AREAID = A.B.C.D|<0-4294967295>

- **A.B.C.D** = OSPFv3 Area ID in IPv4 address format
- **<0-4294967295>** = OSPFv3 Area ID as a decimal value
- **range = Summarize routes matching address/mask (border route)**
- **X:X::X:X/M = Area range for IPv6 prefix**
- **advertise = Advertise this range (default)**
- **not-advertise = Do not advertise this range**

Command Mode

Router mode

Usage

The area range command is used to summarize intra-area routes for an area. The single summary route is then advertised to other areas by the Area Border Routers (ABRs). Routing information is condensed at area boundaries and outside the area. If the network numbers in an area are assigned in a way such that they are contiguous, the ABRs can be configured to advertise a summary route that covers all the individual networks within the area that fall into the specified range.
area stub

Use this command to define an area as a stub area. Use the no parameter with this command to disable this function.

Command Syntax

 (no) area AREAI D stub (no-summary)

 AREAI D = A.B.C.D|<0-4294967295>

 A.B.C.D OSPF Area ID in IPv4 address format.
 <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

 no-summary Stops an ABR from sending summary link advertisements into the stub area.

Default

No stub area is defined.

Command Mode

Router mode

Usage

Configures the area stub command on all routers in the stub area. There are two stub area router configuration commands: the stub and default-cost commands. In all routers attached to the stub area, configure the area by using the stub option of the area command. For an area border router (ABR) attached to the stub area, use the area default-cost command.

Examples

 ZebOS# configure terminal
 ZebOS(config)# router ipv6 ospf
 ZebOS(config-router)# area 1 range 2000::/3

Related Commands

area default-cost

area virtual-link

Use this command to configure a link between two backbone areas that are physically separated through other nonbackbone areas. Use the no parameter with this command to break the virtual-link.

Command Syntax

 area AREAI D virtual-link A.B.C.D (INTERVAL)

 no area AREAI D virtual-link A.B.C.D (INTERVAL|INSTID)

 AREAI D = A.B.C.D|<0-4294967295>
OSPFv3 Commands

A.B.C.D OSPF Area ID in IPv4 address format.

\(<0-4294967295>\) OSPF Area ID as 4 octets unsigned integer value.

\(INTERVAL = \text{dead-interval} | \text{hello-interval} | \text{retransmit-interval} | \text{transmit-delay}\)

\(VALUE = <1-65535>\) The number of seconds in the delay or interval.

\(\text{dead-interval}\) The interval during which no packets are received and after which the router considers neighboring router as off-line. The default is 40 seconds.

\(\text{hello-interval}\) The interval the router waits before it sends a Hello packet. The default is 10 seconds.

\(\text{retransmit-interval}\) The interval the router waits before it retransmit a packet. The default is 5 seconds.

\(\text{transmit-delay}\) The delay to be added to LS age when an LSA is transmitted.

\(\text{INSTID} = \text{instance-id} <0-255>\)

\(<0-255>\) Specifies interface instance ID. The default value is 0.

Command Mode

Router mode

Usage

In OSPFv3, all non-backbone areas must be connected to a backbone area. If the connection to the backbone is lost, the virtual link repairs the connection.

You can configure virtual links between any two backbone routers that have an interface to a common non-backbone area. The protocol treats these two routers joined by a virtual link as if they were connected by an unnumbered point-to-point network. To configure virtual link, include both the transit area ID and the corresponding virtual link neighbor’s router ID in the virtual link neighbor. To see the router ID use the `show ip ospf` command.

Configure the `hello-interval` to be the same for all routers attached to a common network. If the `hello-interval` is short, the router detects topological changes faster, but more routing traffic follows.

`Retransmit-interval` is the expected round-trip delay between any two routers in a network. Set the value to be greater than the expected round-trip delay to avoid needless retransmissions.

`Transmit-delay` is the time taken to transmit a link state update packet on the interface. Before transmission, the link state advertisements in the update packet, are incremented by this amount. Set the transmit-delay to be greater than zero. Also, take into account the transmission and propagation delays for the interface.

Include the transit area ID and the corresponding virtual link neighbor’s router ID in each virtual link neighbor to properly configure a virtual link.

Examples

```
ZebOS# configure terminal
ZebOS(config) router ipv6 ospf
ZebOS(config-router) area 1 virtual-link 10.10.11.50 hello 5 dead 10
ZebOS(config-router) area 1 virtual-link 10.10.11.50 instance-id 1
```

Related commands

`show ipv6 ospf virtual-links`

auto-cost reference bandwidth

Use this command to control how OSPFv3 calculates default metrics for the interface by changing the reference bandwidth.
Use the `no` parameter with this command to assign cost based only on the interface bandwidth.

Command Syntax

```
auto-cost reference-bandwidth <1-4294967>
no auto-cost reference-bandwidth
```

The reference bandwidth in terms of Mbits per second. The default reference bandwidth is 100 Mbps.

Command Mode

Router mode

Default

100 Mbps

Usage

By default OSPFv3 calculates the OSPFv3 metric for an interface by dividing the reference bandwidth by the interface bandwidth. The default value for the reference bandwidth is 100Mbps. The auto-cost command is used to differentiate high bandwidth links. For multiple links with high bandwidth, specify a larger reference bandwidth value to differentiate cost on those links.

Examples

This example changes the reference bandwidth to 1Gbps to change the FastEthernet interface cost from 1 to 10.

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf 1
ZebOS(config-router)# auto-cost reference-bandwidth 1000
```

Related Commands

ipv6 ospf cost

capability restart

Use this command to enable OSPFv3 graceful restart capability.

Use the `no` parameter with this command to disable it.

Note: This command is available only when the `--enable-restart` configuration option is enabled when compiling ZebOS.

Command Syntax

```
(no) capability restart
```

Default

Enabled

Command Mode

Router mode
Usage
By default, the restart capability is enabled (if compiled with --enable-restart). If a router is not restart-capable, it cannot enter Graceful Restart mode and act as a helper.

Examples
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf 100
ZebOS(config-router)# capability restart

capability te
Use this command to enable the ZebOS Traffic Engineering feature. The ZebOS process generates TE LSAs for each link it is configured for.

Use the no parameter with this command to disable the Traffic Engineering feature.

Command Syntax
(no) capability te

Default
Disabled

Command Mode
Router mode

Examples
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# capability te

Related Commands
ipv6 te-metric

clear ipv6 ospf process
Use this command to clear and restart the OSPFv3 routing process. If no WORD is specified, all OSPFv3 processes are cleared.

Command Syntax
clear ipv6 ospf (WORD) process

Command Mode
Privileged Exec Mode

Examples
ZebOS# clear ipv6 ospf ipi process
debug ipv6 ospf events

Use this command to specify debugging options for OSPFv3 event troubleshooting. Use this command without parameters to turn on all the options.

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ipv6 ospf events (abr|asbr|os|router|vlink)
```

- `abr` shows ABR events
- `asbr` shows ASBR events
- `os` shows OS interaction events
- `router` shows other router events
- `vlink` shows virtual link events

Command Mode

Privileged Exec mode and Configure mode

Usage

The `debug ipv6 ospf events` command enables the display of debug information related to OSPF internal events.

Examples

```
ZebOS# no debug ipv6 ospf events abr
ZebOS# debug ipv6 ospf events asbr
```

Related Commands

log file

debug ipv6 ospf ifsm

Use this command to specify debugging options for OSPFv3 Interface Finite State Machine (IFSM) troubleshooting.

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ipv6 ospf ifsm (status|events|timers)
```

- `status` Displays IFSM status information
- `events` Displays IFSM event information
- `timers` Displays IFSM timer information

Command Mode

Privileged Exec mode and Configure mode

Examples

```
ZebOS# debug ipv6 ospf ifsm status
```

Related Commands

log file
debug ipv6 ospf lsa

Use this command to specify the debugging options for OSPFv3 ZebOS Link State Advertisements (LSAs).

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ipv6 ospf lsa (flooding|generate|install|maxage|refresh)
```

- `flooding` Displays LSA flooding.
- `generate` Displays LSA generation.
- `install` Show LSA installation.
- `maxage` Shows maximum age of the LSA in seconds.
- `refresh` Displays LSA refresh.

Command Mode

Privileged Exec mode and Configure mode

Examples

```
ZebOS# debug ipv6 ospf lsa
```

debug ipv6 ospf nfsm

Use this command to specify debugging options for OSPFv3 Neighbor Finite State Machines (NFSMs).

Use the `no` parameter with this command to disable this function.

Command Syntax

```
(no) debug ipv6 ospf nfsm (status|events|timers)
```

- `status` Displays NFSM status information.
- `events` Displays NFSM event information.
- `timers` Displays NFSM timer information.

Command Mode

Privileged Exec mode and Configure mode

Examples

```
ZebOS# debug ipv6 ospf nfsm events
ZebOS# no debug ipv6 ospf nfsm timers
```

Related Commands

`log file`

debug ipv6 ospf nsm

Use this command to specify the debugging options for OSPFv3 NSM information.

Use the `no` parameter with this command to disable this function.
Command Syntax
(no) debug ipv6 ospf nsm (redistribute|interface)
 redistribute Specifies zebos redistribute.
 interface Specifies the debugging of nsm interface.

Command Mode
Privileged Exec mode and Configure mode

Examples
 ZebOS# debug ipv6 ospf nsm interface

debug ipv6 ospf packet

Use this command to specify the packet debugging options for OSPFv3 ZebOS information.
Use the no parameter with this command to disable this function.

Command Syntax
(no) debug ipv6 ospf packet (dd|detail|hello|ls-ack|ls-request|
 ls-update|recv|send)
 dd OSPFv3 database description
 detail Detail information
 hello OSPFv3 hello
 ls-ack OSPFv3 Link State Acknowledgment
 ls-request OSPFv3 Link State Request
 ls-update OSPFv3 Link State Update
 recv Packet received
 send Packet sent

Command Mode
Privileged Exec mode and Configure mode

Examples
 ZebOS# debug ipv6 ospf packet ls-request

debug ipv6 ospf route

Use this command to specify which route calculation to debug. Use this command without parameters to turn on all the options.
Use the no parameter with this command to disable this function.

Command Syntax
(no) debug ipv6 ospf route (ase|install|spf|ia)
 ase Specifies the debugging of external route calculation
 install Specifies the debugging of route installation
 spf Specifies the debugging of SPF calculation
 ia Specifies the debugging of Inter-Area route calculation
OSPFv3 Commands

Command Mode
Privileged Exec mode and Configure mode

Examples
ZebOS# no debug ipv6 ospf route
ZebOS# debug ipv6 ospf route ia

default-metric
Use this command to set default metric values for the OSPFv3 routing protocol.
Use the no parameter with this command to return to the default state.

Command Syntax
 default-metric <1-16777214>
 no default-metric
 <1-16777214> Default metric value appropriate for the specified routing protocol.

Default
Built-in, automatic metric translations, as appropriate for each routing protocol.

Command Mode
Router mode

Usage
A default metric facilitates redistributing routes even with incompatible metrics. If the metrics do not convert, the default metric provides an alternative and enables the redistribution to continue. Default-metric command is used to cause the current routing protocol to use the same metric value for all redistributed routes. Use this command in conjunction with the redistribute command.

Examples
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# default-metric 100

Related commands
redistribute

enable db-summary-opt
Use this command to enable the database summary list optimization for OSPFv3. The default setting is disabled.
Use the no form of the command to disable database summary list optimization.

Command Syntax
 (no) enable db-summary-opt

Command Mode
Router mode
Usage
When this feature is enabled, the database exchange process is optimized by removing the LSA from the Database summary list for the neighbor, if the LSA instance in Database Summary list is the same as, or less recent than, the listed LSA in the database description packet received from the neighbor.

Examples
ZebOS# configure terminal
ZebOS(config)# router ospf
ZebOS(config-router)# enable db-summary-opt
ZebOS(config-router)# no enable db-summary-opt

ipv6 ospf cost

Use this command to specify the link-cost described in LSAs.
Use the no parameter with this command to reset the cost to default.

Command Syntax

```
ipv6 ospf cost COST (INSTID)
no ipv6 ospf cost (INSTID)
```

- COST = `<1-65535>` Specifies the cost of the interface. The default value is 10.
- INSTID = `instance-id <0-255>`
- `<0-255>` Specifies instance ID of the interface. The default value is 0.

Command Mode
Interface mode

Usage
The cost (or metric) of an interface in OSPF indicates the overhead required to send packets across a certain interface. The value is taken to describe Link State information, and used for route calculation. If instance ID is specified, the cost value is applied to an instance with the same instance ID on the interface.

Examples
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf cost 20 instance-id 1

Related Commands
show ipv6 ospf interface

ipv6 ospf dead-interval

Use this command to set the interval during which no hello packets are received and after which a neighbor is declared dead.
Use the no parameter with this command to reset the interval to default.

Command Syntax

```
ipv6 ospf dead-interval INTERVAL (INSTID)
```
no ipv6 ospf dead-interval (INSTID)
 INTERVAL= <1-65535> Specifies the interval in seconds. The default interval is 40 seconds.
 INSTID = instance-id <0-255>
 <0-255> Specifies instance ID of the interface. The default value is 0.

Command Mode
Interface mode

Usage
Dead-interval is advertised in the Hello packets. When receiving Hello packets, OSPF router compares dead-interval in a receiving packet and the dead-interval configured on the receiving interface. If the intervals do not match, the Hello packet is discarded. Dead-interval is the amount of time that the router waits to receive an OSPF Hello packet from the neighbor before declaring the neighbor down.

Examples
 ZebOS# configure terminal
 ZebOS(config)# interface eth0
 ZebOS(config-if)# ipv6 ospf dead-interval 20

Related commands
ipv6 ospf hello-interval, show ipv6 ospf interface

ipv6 ospf display route single-line

Use this command to change the result of the show ipv6 ospf route command.
Use the no parameter with this command to revert to default.

Command Syntax
 (no) ipv6 ospf display route single-line

Command Mode
Configure mode

Usage
By default, the show ipv6 ospf route command displays routes in multiple lines. This command changes the result to show each route entry in a single-line.

Examples
 ZebOS# configure terminal
 ZebOS(config)# ipv6 ospf display route single-line

Related Commands
show ipv6 ospf route

ipv6 ospf hello-interval

Use this command to specify the interval between hello packets.
Use the no parameter with this command to reset the interval to default.

Command Syntax

```
ipv6 ospf hello-interval INTERVAL (INSTID)
nov6 ospf hello-interval (INSTID)
```

- `INTERVAL= <1-65535>` Specifies the interval in seconds. The default interval is 10 seconds.
- `INSTID = instance-id <0-255>`
 - `<0-255>` Specifies instance ID of the interface. The default value is 0.

Command Mode

Interface mode

Usage

Hello-interval is advertised in the Hello packets. When receiving Hello packets, the OSPF router compares Hello interval in the receiving packet with the interval configured on the receiving interface. If this interval does not match, Hello packet is discarded. A shorter Hello-interval ensures faster detection of topological changes, but this also results in more routing traffic.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf hello-interval 5 instance-id 1
```

Related commands

ipv6 ospf dead-interval, show ipv6 ospf interface

ipv6 ospf neighbor

Use this command to configure OSPFv3 routers interconnecting to non-broadcast networks.

Use the no parameter with this command to remove a configuration.

Command Syntax

```
(no) ipv6 ospf neighbor X:X::X:X (COST) (PRIORITY|POLL-INTERVAL) INSTID
```

- `X:X::X:X = Neighbor ID.`
- `COST = cost <1-65535>` Cost of the interface. The default value is 10. Not applicable to non-broadcast multiaccess (NBMA) networks.
- `PRIORITY = priority <0-255>` Priority. The default priority is 1. Not applicable to point-to-multipoint interfaces.
- `POLL-INTERVAL = poll-interval <1-65535>` Dead neighbor polling interval in seconds. It is recommended to set this value much higher than the hello interval. The default value is 120 seconds.
- `INSTID = instance-id <0-255>`
 - `<0-255>` Specifies instance ID of the interface. The default value is 0.

Command Mode

Interface mode
Usage

One neighbor entry must be included for each known non-broadcast network neighbor. The neighbor address must be a link-local address of the neighbor.

Note: The `priority` keyword does not apply to point-to-multipoint interfaces. For point-to-multipoint interfaces, the `cost` keyword and the number argument are the only applicable options. The `cost` keyword does not apply to non-broadcast multiaccess (NBMA) networks.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf neighbor 2000:500::1 cost 2 instance-id 3
```

ipv6 ospf priority

Use this command to set the router priority for determining the designated router for the network.

Use the `no` parameter with this command to reset the value to default.

Command Syntax

```
ipv6 ospf priority PRIORITY (INSTID)
no ipv6 ospf priority (INSTID)
```

- **PRIORITY = <0-255>** Specifies the priority. The default priority is 1.
- **INSTID = instance-id <0-255>** Specifies interface instance ID. The default value is 0.

Default

The default priority is 1.

Command Mode

Interface mode

Usage

Set the priority to help to determine the OSPF Designated Router (DR) for a network. If more than one router attempts to become the DR, the router with higher priority becomes DR. If the router priority is the same amongst routers, the router with highest router ID breaks a tie.

Only routers with non-zero router priority values are eligible to become the designated router or Backup designated router. Router priority values are only valid for broadcast or NBMA networks, since DR election is triggered only on these type of networks.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf priority 127
```

Related Commands

`show ipv6 ospf interface`
ipv6 ospf restart grace-period

Use this command to configure the grace period for restarting the router.

Use the no parameter with this command to revert to the default grace period.

Note: This command is available only when the --enable-restart configuration option is enabled when compiling ZebOS.

Command Syntax

ipv6 ospf restart grace-period <1-1800>
no ipv6 ospf restart grace-period

Specifies the grace period in seconds.

Default

The default grace period is 120 seconds.

Command Mode

Configure mode

Usage

Use this command to enable the OSPF Graceful Restart feature on the OSPFv3 daemon to handle an unplanned restart as a graceful restart. If this command is configured, NSM is notified about the Grace Period. In case the OSPFv3 daemon unexpectedly shuts down, NSM sends this value to the OSPFv3 daemon when it comes up again. OSPFv3 daemon uses this value to end the Graceful state.

Examples

ZebOS# configure terminal
ZebOS(config)# ipv6 ospf graceful-restart grace-period 250

ipv6 ospf restart helper

Use this command to configure the helper behavior for Graceful Restart.

Use the no parameter with this command to revert to the default.

Note: This command is available only when the --enable-restart configuration option is enabled when compiling ZebOS.

Command Syntax

ipv6 ospf restart helper never router-id A.B.C.D
router-id Router ID of neighbor to never to act as helper
A.B.C.D Router ID in IPv4 address format
ipv6 ospf restart helper POLICY

POLICY = only-reload|only-upgrade|max-grace-period <1-1800>
only-reload Help only on software reloads
only-upgrade Help only on software upgrades
max-grace-period Help only if received grace-period is less than this value

no ipv6 ospf restart helper never router-id A.B.C.D|all
OSPFv3 Commands

- **router-id** Router ID of neighbor to never to act as helper
 A.B.C.D Router ID in IPv4 address format
 all All router IDs

- no ipv6 ospf restart helper POLICY
 POLICY = only-reload|only-upgrade|max-grace-period <1-1800>
 only-reload Help only on software reloads
 only-upgrade Help only on software upgrades
 max-grace-period Help only if received grace-period is less than this value

Command Mode

Configure mode

Usage

Use the *never* parameter with the *ipv6 ospf restart helper* command to prevent the neighbor from entering Helper mode.

Use the *POLICY* parameters with the *ipv6 ospf restart helper* command to configure certain local policies on the helper. If the configured policies are satisfied, only a router can act as helper.

Use the *never router-id all* parameter with the *no ipv6 ospf restart helper* command to remove all neighbor IDs from the never router ID list.

Examples

```bash
ZebOS# configure terminal
ZebOS(config)# ipv6 ospf restart helper never router-id 1.1.1.1

ZebOS# configure terminal
ZebOS(config)# ipv6 ospf restart helper only-reload

ZebOS# configure terminal
ZebOS(config)# ipv6 ospf restart helper only-reload max-grace-period 200

ZebOS# configure terminal
ZebOS(config)# no ipv6 ospf restart helper never

ZebOS# configure terminal
ZebOS(config)# no ipv6 ospf restart helper router-id all

ZebOS# configure terminal
ZebOS(config)# no ipv6 ospf restart helper only-upgrade only-reload
```

ipv6 ospf retransmit-interval

Use this command to set the interval between retransmission of Link State Update packets for adjacencies belonging to the interface.

Use the *no* parameter with this command to reset the interval to the default value.

Command Syntax

```bash
ipv6 ospf retransmit-interval INTERVAL (INSTID)
no ipv6 ospf retransmit-interval (INSTID)
  INTERVAL = <3-65535>  Specifies the interval in seconds. The default interval is 5 seconds.
```
INSTID = instance-id <0-255>
<0-255> Specifies instance ID of the interface. The default value is 0.

Command Mode
Interface mode

Usage
After sending an LSA to a neighbor, the router keeps the LSA on the LS-retransmission list until it receives an acknowledgement. If the router does not receive an acknowledgment from the neighbor, during the set time (retransmit interval) it sends the LSA to the neighbor again.

This value is also used to retransmit DD packet and Link State Request packet.

Examples
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf retransmit-interval 3

Related Commands
show ipv6 ospf interface

ipv6 ospf transmit-delay

Use this command to set the estimated time it takes to transmit a Link State Update packet over the interface.

Use the no parameter with this command to reset the delay to the default value.

Command Syntax
ipv6 ospf transmit-delay DELAY (INSTID)
no ipv6 ospf transmit-delay (INSTID)

DELAY=<1-65535> Specifies the delay in seconds. The default delay value is 1 second.
INSTID = instance-id <0-255>
<0-255> Specifies instance ID of the interface. The default value is 0.

Command Mode
Interface mode

Usage
The transmit-delay value is added to the LS age of LSAs and is advertised through this interface whenever the LSAs are transmitted.

Examples
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 ospf transmit-delay 2

Related Commands
show ipv6 ospf interface
ipv6 router ospf

Use this command to enable OSPFv3 routing on an interface.

Use the `no` parameter with this command to disable OSPFv3 routing on an interface.

Command Syntax

```
(no) ipv6 router ospf area AREAID (INSTID | TAG
(no) ipv6 router ospf TAG area AREAID (INSTID)
```

AREAID = A.B.C.D|<0-4294967295>

A.B.C.D OSPF Area ID in IPv4 address format.

<0-4294967295> OSPF Area ID as 4 octets unsigned integer value.

TAG = tag WORD instance-id <0-255>

WORD OSPFv3 process tag. It is a string comprised of any characters, numbers or symbols.

INSTID = instance-id <0-255>

<0-255> Specifies interface instance ID. The default value is 0.

Command Mode

Interface mode

Usage

When enabling OSPFv3 routing on an interface, specifying the Area ID is mandatory; Instance ID and Tag are optional. Each OSPFv3 process allows one instance of routing for each Instance ID. You can enable routing on an interface with one instance ID. You can run multiple OSPFv3 processes on the same interface if the instance ID is different. Similarly, different OSPF processes cannot enable OSPFv3 routing instances with the same instance ID.

Whenever the OSPFv3 process receives a packet it checks if the Instance ID present in OSPFv3 packet matches the Instance ID of the receiving interface.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 router ospf area 1 tag IPI instance-id 1
```

Related Commands

- router ipv6 ospf

ipv6 te-metric

Use this command to set Traffic Engineering metric for an interface.

Use the `no` parameter with this command to unset Traffic Engineering metric for this interface.

Command Syntax

```
(no) ipv6 te-metric <1-65535>
```

<1-65535> The TE metric value. The default value is 0.
OSPFv3 Commands

Command Mode

Interface mode

Usage
The TE metric is used in OSPFv3-TE Link State Advertisements. When the TE metric value is not set, OSPF cost value of an interface is used in TE LSAs.

Examples

```
ZebOS# configure terminal
ZebOS(config)# interface eth0
ZebOS(config-if)# ipv6 te-metric 6
```

Related Commands
capability te

max-concurrent-dd

Use this command to set the limit for the number of neighbors in the database exchange process that can be processed concurrently. The specified limit is for the number of neighbors from all interfaces, not per interface.

Command Syntax

```
max-concurrent-dd <1-65535>
```

<1-65535> Specify the number of DD processes.

Command Mode

Router mode

Usage

This command is useful if a router has to bring up adjacency on several neighbors and that is affecting the performance. Using this command to limit the number of neighbors that can be processed concurrently can enhance the performance of the system.

Examples

The following example sets the max-concurrent-dd value to 4 to allow processing of only 4 neighbors at a time.

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# max-concurrent-dd 4
```

passive-interface

Use this command to suppress sending Hello packets on on all interfaces, or on a specified interface.

Use the `no` form with this command to resume sending hello packets on all interfaces, or on a specified interface.

Command Syntax

```
(no) passive-interface (NAME)
```

NAME Interface name
Command Mode
Router mode

Usage
The passive-interface command is used to configure OSPFv3 on simplex Ethernet interfaces. Since the simplex interfaces represent only one network segment between two devices, configure the transmitting interface as a passive interface. This ensures that OSPFv3 does not send hello packets for the transmitting interface. Both the devices can see each other via the hello packet generated for the receiving interface.

Using the passive-interface command without the optional parameters puts all interfaces into passive mode. Using the no passive-interface command without the optional parameters removes all interfaces from passive mode.

Examples
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# passive-interface eth0

redistribute
Use this command to import routes from other routing protocols, or from another OSPFv3 instance, into OSPFv3 AS-external-LSAs.

Use the no parameter with this command to stop redistribution.

Command Syntax
redistribute PROTOCOL (METRIC|METRIC_TYPE|ROUTEMAP)
no redistribute PROTOCOL

PROTOCOL = kernel|connected|static|bgp|rip|isis|ospf (WORD)
 kernel Specifies Kernel routes
 connected Specifies Connected routes
 static Specifies Static routes
 bgp Specifies BGP routes
 rip Specifies RIP (RIPng) routes
 isis Specifies IS-IS routes
 ospf Specifies OSPF routes
 WORD Specifies OSPFv3 process tag

METRIC = metric <0-16777214>
 <0-16777214> metric value put into AS-external-LSAs.

METRIC_TYPE = metric-type <1-2>
 <1-2> External metric type

ROUTEMAP = route-map NAME
 NAME Name of route-map. A router-map is a series of rule-sets defined in the Privileged Exec mode.

Command Mode
Router mode
Usage

OSPFv3 advertises routes learnt from other routing protocols, or other OSPFv3 instances, including static or connected routes. Each injected prefix is put into the AS-external-LSA with a specified metric and metric-type.

Use the `redistribute ospf` command to inject routes, learnt from other OSPF instances, into this OSPF instance to generate AS-external-LSAs.

Examples

The following example shows redistribution of BGP routes into the OSPFv3 routing table, with metric as 10.

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# redistribute bgp metric 10 metric-type 1
```

The following example shows redistribution of OSPFV3 instance `tag1` routes into the OSPFv3 instance `tag2` routing table, with metric as 10.

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf tag2
ZebOS(config-router)# redistribute ospf tag1 metric 10 metric-type 1
```

Related Commands

default-metric, route-map

restart ipv6 ospf graceful

Use this command to force restarting OSPFv3 as Graceful Restart.

Note: This command is available only when the `--enable-restart` configuration option is enabled when compiling ZebOS.

Command Syntax

```
restart ipv6 ospf graceful (grace-period <1-1800>)
```

Command Mode

Privileged Exec mode and Exec mode

Usage

After this command is executed, the router immediately shuts down and notifies NSM that OSPFv3 has shut down as Graceful. In turn, NSM preserves routes installed by OSPFv3, until the grace period expires.

Examples

```
ZebOS# restart ipv6 ospf graceful grace-period 200
```

router-id

Use this command to specify a router ID for the OSPFv3 process.

Use the `no` form of this command to force OSPFv3 to stop the routing functionality.

Command Syntax

```
router-id IPADDRESS
```
no router-id
 IPADDRESS Specifies the router ID in an IPv4 address format.

Command Mode
Router mode

Usage
Configure each router with a unique router-id. In an OSPFv3 router process that has active neighbors, a new router-id is used at the next reload or when you start the OSPFv3 manually.

Examples
The following example shows a fixed router ID 43.3.3.3

 ZebOS# configure terminal
 ZebOS(config)# router ipv6 ospf
 ZebOS(config-router)# router-id 43.3.3.3

Related Commands
show ip ospf

router ipv6 ospf
Use this command to initiate OSPFv3 routing process and enter Router mode to configure OSPFv3 routing process. Use the no parameter with this command to remove OSPFv3 process.

Command Syntax
 (no) router ipv6 ospf (WORD)
 WORD OSPFv3 process tag. It is a string comprised of any characters, numbers or symbols.

Command Mode
Configure mode

Usage
Use this command to initiate the OSPFv3 process. For making the OSPFv3 routing process functional, you must specify OSPFv3 process tag in router mode and enable OSPFv3 on at least one interface. OSPFv3 is only enabled on interfaces where OSPFv3 process tag matches the tag specified using ipv6 router ospf area command in Interface mode.

Examples
 ZebOS# configure terminal
 ZebOS(config)# router ipv6 ospf IPI
 ZebOS(config-router)#

Related Commands
ipv6 router ospf, router_id
show debugging ipv6 ospf

Use this command to display the OSPFv3 debugging option.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show debugging ipv6 ospf

Command Mode

Privileged Exec mode

Examples

 ZebOS# show debugging ipv6 ospf

show ipv6 ospf

Use this command to display global and area information about OSPFv3.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show ipv6 ospf (TAG)

 TAG OSPFv3 process tag

Command Mode

Privileged Exec mode and Exec Mode

Usage

 ZebOS# show ipv6 ospf
Routing Process "OSPFv3 0" with ID 1.2.3.4
SPF schedule delay 5 secs, Hold time between SPF 10 secs Minimum LSA interval 5 secs, Minimum LSA arrival 1 secs Number of external LSA 3. Checksum Sum 0x2CD6F Number of areas in this router is 1
Area BACKBONE(0)
Number of interfaces in this area is 1
SPF algorithm executed 3 times
Number of LSA 4. Checksum Sum 0x2A6AC

Examples

 ZebOS# show ipv6 ospf
 ZebOS# show ipv6 ospf IPI

show ipv6 ospf database

Use this command to display information in the OSPFv3 Link State Database.
To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ipv6 ospf (TAG) database (LSATYPE) (ADVROUTER)

TAG OSPFv3 process tag
LSATYPE = external|grace|link|inter-prefix|inter-router|intra-prefix|network|router||te
  external Shows AS-external-LSAs.
  grace Shows a specific LSA in the OSPFv3 database.
  link Shows Link-LSAs.
  inter-prefix Shows Inter-Area-Prefix LSAs.
  inter-router Shows Inter-Area-Router LSAs.
  intra-prefix Shows Intra-Area-Prefix-LSAs.
  network Shows Network-LSAs.
  router Shows Router-LSAs.
  te Shows TE LSAs.
ADVROUTER = adv-router A.B.C.D
  A.B.C.D = Router ID of the Advertising Router.
```

Command Mode

Privileged Exec mode and Exec Mode

Usage

This is a sample output from the show ipv6 ospf database command displaying the database summary for the OSPFv3 information:

```
ZebOS# show ipv6 ospf database
Link-LSA (Interface eth0)
  Link State ID ADV Router Age Seq# CkSum Prefix
  0.0.0.3 1.2.3.4 104 0x80000004 0x889e 0
  0.0.0.5 5.6.7.8 142 0x80000003 0xab70 2
Router-LSA (Area 0.0.0.0)
  Link State ID ADV Router Age Seq# CkSum Link
  0.0.0.1 1.2.3.4 94 0x800000014 0xeaee 1
  0.0.0.1 5.6.7.8 105 0x800000019 0x8a3e 1
Network-LSA (Area 0.0.0.0)
  Link State ID ADV Router Age Seq# CkSum
  0.0.0.5 5.6.7.8 105 0x80000001 0xa441
Intra-Area-Prefix-LSA (Area 0.0.0.0)
  Link State ID ADV Router Age Seq# CkSum Prefix Reference
  0.0.0.1 5.6.7.8 104 0x80000001 0x8d4f 2 Network-LSA
AS-external-LSA
  Link State ID ADV Router Age Seq# CkSum
  0.0.0.1 5.6.7.8 1229 0x80000002 0xe92d
  0.0.0.2 5.6.7.8 1229 0x80000002 0xef25
  0.0.0.3 5.6.7.8 1229 0x80000002 0xf51d
```
This is a sample output from the `show ipv6 ospf database grace` command displaying the database summary for a specific LSA in the OSPFv3 database:

```
ZebOS# show ipv6 ospf database grace
   OSPFv3 Router with ID (45.45.45.1) (Process *null*)
                   Grace-LSA (Interface eth1)

   LS age: 2
   LS Type: Grace LSA
   Link State ID: 0.0.0.3
   Advertising Router: 99.99.99.1
   LS Seq Number: 0x80000001
   Checksum: 0x9046
   Length: 36

       Grace Period: 320
       Restart Reason:
                   Software Restart
```

Examples

```
ZebOS# show ipv6 ospf database
ZebOS# show ipv6 ospf IPI database
ZebOS# show ipv6 ospf IPI database router
ZebOS# show ipv6 ospf IPI database network adv-router 10.10.11.50
ZebOS# show ipv6 ospf IPI database grace
```

show ipv6 ospf interface

Use this command to display OSPFv3 interface information.

To modify the lines displayed, use the `|` (output modifier token); to save the output to a file, use the `>` output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show ipv6 ospf interface (IFNAME)
```

IFNAME= An alphanumeric string that is the name of the interface.

Command Mode

Privileged Exec mode and Exec mode

Usage

This is a sample output from the `show ipv6 ospf interface` command displaying the OSPFv3 interface information:

```
ZebOS# show ipv6 ospf interface
eth0 is up, line protocol is up
   Interface ID 3, Instance ID 0, Area 0.0.0.0
   IPv6 Link-Local Address fe80::248:54ff:fec0:f32d/10
   Router ID 1.2.3.4, Network Type BROADCAST, Cost: 10
   Transmit Delay is 1 sec, State Backup, Priority 1
   Designated Router (ID) 5.6.7.8
```
OSPFv3 Commands

- Interface Address fe80::203:47ff:fe4c:776e
- Backup Designated Router (ID) 1.2.3.4
- Interface Address fe80::248:54ff:fec0:f32d
- Timer interval configured, Hello 10, Dead 40, Wait 40, Retransmit 5
- Hello due in 00:00:01
- Neighbor Count is 1, Adjacent neighbor count is 1

Examples

```
show ipv6 ospf interface fe80::246:4ff:f32d
```

show ipv6 ospf neighbor

Use this command to display information about an OSPFv3 neighbor.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.

Command Syntax

```
show ipv6 ospf (TAG) neighbor (INTERFACE|A.B.C.D|detail)
```

- **TAG** = OSPFv3 process tag.
- **A.B.C.D** Neighbor ID
- **INTERFACE** = IFNAME (detail)
- **IFNAME** Name of the Interface
- **detail** Detail of neighbors

Command Mode

Privileged Exec mode and Exec Mode

Usage

This is a sample output from the `show ipv6 ospf neighbor` command displaying information about the OSPFv3 neighbor.

```
ZebOS# show ipv6 ospf neighbor
OSPFv3 Process (*null*)
Neighbor ID Pri State Dead Time Interface Instance ID
5.6.7.8 1 Full/DR 00:00:38 eth0 0
```

Examples

```
ZebOS# show ipv6 ospf neighbor
ZebOS# show ipv6 ospf IPI neighbor
ZebOS# show ipv6 ospf IPI neighbor detail
ZebOS# show ipv6 ospf IPI neighbor eth0 detail
```

show ipv6 ospf route

Use this command to display the IPv6 routing table for OSPFv3.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the *ZebOS Command Line Interface Environment* chapter.
Command Syntax

```
show ipv6 ospf (TAG) route
  TAG OSPFv3 process tag
```

Command Mode

Privileged Exec mode and Exec mode

Usage

The routes can be displayed in two ways. One shows each routing entry in a single-line, the other in multi-line. By default, the routing table is displayed in the multi-line format, for a single line display use the ipv6 ospf display route single-line.

The following is a sample output for a routing display in single-line and multi-line formats:

```
ZebOS# show ipv6 ospf route
Destination Metric Next-hop Interface
3ffe:1:1::/48 10 directly connected, eth0
3ffe:2:1::/48 10 directly connected, eth0
3ffe:2:2::/48 10 directly connected, eth0
3ffe:3:1::/48 10 directly connected, eth0
3ffe:3:2::/48 10 directly connected, eth0
3ffe:3:3::/48 10 directly connected, eth0
E2 3ffe:100:1::1/128 10/20 via fe80::203:47ff:fe4c:776e, eth0
E2 3ffe:100:2::1/128 10/20 via fe80::203:47ff:fe4c:776e, eth0
E2 3ffe:100:3::1/128 10/20 via fe80::203:47ff:fe4c:776e, eth0
IA 3ffe:101:1::/48 20 via fe80::203:47ff:fe4c:776e, eth0
IA 3ffe:101:2::/48 20 via fe80::203:47ff:fe4c:776e, eth0
IA 3ffe:101:3::/48 20 via fe80::203:47ff:fe4c:776e, eth0
```

```
ZebOS# show ipv6 ospf route
Destination Metric Next-hop Interface
3ffe:1:1::/48 10
  -- eth0
3ffe:2:1::/48 10
  -- eth0
3ffe:2:2::/48 10
  -- eth0
3ffe:3:1::/48 10
  -- eth0
3ffe:3:2::/48 10
  -- eth0
3ffe:3:3::/48 10
  -- eth0
E2 3ffe:100:1::1/128 10/20
  via fe80::203:47ff:fe4c:776e eth0
E2 3ffe:100:2::1/128 10/20
  via fe80::203:47ff:fe4c:776e eth0
E2 3ffe:100:3::1/128 10/20
  via fe80::203:47ff:fe4c:776e eth0
IA 3ffe:101:1::/48 20
  via fe80::203:47ff:fe4c:776e eth0
IA 3ffe:101:2::/48 20
  via fe80::203:47ff:fe4c:776e eth0
IA 3ffe:101:3::/48 20
  via fe80::203:47ff:fe4c:776e eth0
```
show ipv6 ospf topology

Use this command to display information about OSPFv3 topology for each area.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ipv6 ospf (TAG) topology (area AREAIMD)
TAG OSPFv3 process tag
AREAIMD = A.B.C.D|<0-4294967295>
    A.B.C.D OSPF Area ID in IPv4 address format.
    <0-4294967295> OSPF Area ID as 4 octets unsigned integer value.
```

Command Mode

Privileged Exec mode and Exec Mode

Usage

```
ZebOS# show ipv6 ospf topology
OSPFv3 paths to Area (0.0.0.0) routers
Router ID Bits Metric Next-Hop Interface
1.2.3.4 --
5.6.7.8 E 10 5.6.7.8 eth0
```

Examples

```
ZebOS# show ipv6 ospf topology
ZebOS# show ipv6 ospf IPII topology
```

show ipv6 ospf virtual-links

Use this command to display information about OSPFv3 virtual-links.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

```
show ipv6 ospf (TAG) virtual-links
TAG OSPFv3 process tag
```
Command Mode
Privileged Exec mode and Exec Mode

Usage
ZebOS# show ipv6 ospf virtual-links
Virtual Link VLINK1 to router 5.6.7.8 is up
Transit area 0.0.0.1 via interface eth0, instance ID 0
Local address 3ffe:1234:1::1/128
Remote address 3ffe:5678:3::1/128
Transmit Delay is 1 sec, State Point-To-Point,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:01
Adjacency state Up

Examples

 ZebOS# show ipv6 ospf virtual-links
 ZebOS# show ipv6 ospf IPI virtual-links

timers spf

Note: Use this command to adjust route-calculation timers.
Use the `no` parameter of this command to return to the default timer values.

Command Syntax

 timers spf SPF-DELAY SPF-HOLDTIME
 no timers spf SPF-DELAY SPF-HOLDTIME

SPF-DELAY= <0-2147483647> Specifies the delay between receiving a change to SPF calculation. The
default spf-delay value is 5 seconds
SPF-HOLDTIME= <0-2147483647> Specifies hold time between consecutive SPF calculations. The
default spf-holdtime value is 10 seconds.

Command Mode
Router mode

Usage
The `timer spf` command configures the delay time between the receipt of a topology change and the calculation of
the Shortest Path First (SPF). This command also configures the hold time between two consecutive SPF calculations.

Examples

 ZebOS# configure terminal
 ZebOS(config)# router ipv6 ospf
 ZebOS(config-router)# timers spf 5 10

Related Commands

timers spf exp

Use this command to adjust route-calculation timers using exponential back-off delays.
Use the `no` parameter with this command to return to the default exponential back-off timer values.

Command Syntax

```plaintext
	timers spf exp MIN_HOLDTIME MAX_HOLDTIME

no timers spf exp
```

- **MIN_HOLDTIME** = `<0-2147483647>` Specifies the minimum delay between receiving a change to SPF calculation in milliseconds. The default SPF minimum hold-time delay value is 50 milliseconds.
- **MAX_HOLDTIME** = `<0-2147483647>` Specifies the maximum delay between receiving a change to SPF calculation in milliseconds. The default SPF maximum hold-time delay value is 50 seconds.

Command Mode

Router mode

Usage

The `timers spf exp` command configures the minimum and maximum delay time between the receipt of a topology change and the calculation of the Shortest Path First (SPF).

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf 100
ZebOS(config-router)# timers spf exp 5 10
```

undebug ipv6 ospf event

Use this command to disable debugging options for OSPFv3 event troubleshooting. Use this command without parameters to disable all the options.

Command Syntax

```plaintext
undebug ipv6 ospf event (abr|asbr|os|router|vlink)
```

- **abr** disables debugging of ABR events
- **asbr** disables debugging of ASBR events
- **os** disables debugging of OS interaction events
- **router** disables debugging of other router events
- **vlink** disables debugging of virtual link events

Command Mode

Privileged Exec mode

Examples

```
ZebOS# undebug ipv6 ospf event abr
```

undebug ipv6 ospf ifsm

Use this command to disable debugging options for OSPFv3 Interface Finite State Machine (IFSM) troubleshooting.

Command Syntax

```plaintext
undebug ipv6 ospf ifsm (status|events|timers)
```

- **events** Disables debugging of IFSM event information
status Disables debugging of IFSM status information
timers Disables debugging of IFSM timer information

Command Mode
Privileged Exec mode

Examples
ZebOS# undebug ipv6 ospf ifsm events

Related Commands

undebug ipv6 ospf lsa

Use this command to disable debugging options for OSPFv3 Link State Advertisements (LSA) troubleshooting.

Command Syntax
```
undebug ipv6 ospf lsa (generate|flooding|install|maxage|refresh)
```
- **generate** Disables debugging of the LSA generation.
- **flooding** Disables debugging of the LSA flooding.
- **install** Disables debugging of the LSA installation.
- **maxage** Disables debugging of maximum age of the LSA in seconds.
- **refresh** Disables debugging of LSA refresh.

Command Mode
Privileged Exec mode

Examples
ZebOS# undebug ipv6 ospf lsa refresh

undebug ipv6 ospf nfsm

Use this command to disable the debugging options for OSPFv3 Neighbor State Machines (NSMs).

Command Syntax
```
undebug ipv6 ospf nfsm (status|events|timers)
```
- **status** Disable the logging of NSM status information.
- **events** Disable the logging of NSM event information.
- **timers** Disable the logging of NSM timer information.

Command Mode
Privileged Exec mode

Examples
ZebOS# undebug ipv6 ospf nfsm events
OSPFv3 Commands

undebug ipv6 ospf nsm

Use this command to disable debugging options for OSPFv3 NSM information.

Command Syntax

```
undebug ipv6 ospf nsm (interface|redistribute)
```

- `interface` Disable logging of NSM interface information.
- `redistribute` Disable logging of NSM redistribute information.

Command Mode

Privileged Exec mode

Usage

```
ZebOS# undebug ipv6 ospf nsm interface
```

undebug ipv6 ospf packet

Use this command to disable debugging options for OSPFv3 packets.

Command Syntax

```
undebug ospf packet PARAMETERS
```

- `PARAMETERS = dd|detail|hello|ls-ack|ls-request|ls-update`
- `dd` Disable debugging for OSPF database descriptions.
- `detail` Disable the setting of the debug option set to detailed information.
- `hello` Disable debugging for OSPF hello packets.
- `ls-ack` Disable debugging for OSPF link state acknowledgments.
- `ls-request` Disable debugging for OSPF link state requests.
- `ls-update` Disable debugging for OSPF link state updates.

Command Mode

Privileged Exec mode

Examples

```
ZebOS# undebug ipv6 ospf packet ls-request recv detail
```

undebug ipv6 ospf route

Use this command to disable route calculation for OSPFv3 debugging. Use this command without parameters to disable all the options.

Command Syntax

```
undebug ipv6 ospf route (ase|ia|install|spf)
```

- `ia` Disable the debugging of Inter-Area route calculation
- `ase` Disable the debugging of external route calculation
- `install` Disable the debugging of route installation
- `spf` Disable the debugging of SPF calculation
Command Mode
Privileged Exec mode

Examples
 ZebOS# undebug ipv6 ospf route install
This chapter provides an alphabetized reference of the OSPF VPN commands.

router ospf vrf

Use this command to specify a VRF instance in OSPF.

Note: This command is available only if **--enable-pece-ospf** configuration option is enabled when compiling ZebOS.

Command Syntax

```
router ospf PROCESSID VRFNAME
```

- **PROCESSID** = <1-65535> Any positive integer identifying a routing process. The process ID should be unique for each routing process.
- **VRFNAME** Name of the VRF to associate with this OSPF instance.

Command Mode

Configure mode

Usage

To use this command you must first create a VRF Name in the NSM using the `ip vrf` command. Associate the same name with the OSPF instance using this command. Refer to the **NSM Command Reference** for details on this command.

Examples

```
ZebOS# configure terminal
ZebOS(config)# router ospf 100 ipi
ZebOS(config-router)#
```

Related Commands

`ip vrf`

show ip vrf

Use this command to list information about existing VRFs, such as, VRF name, OSPF process ID and the name of the interface to which each VRF is assigned.

To modify the lines displayed, use the | (output modifier token) ; to save the output to a file, use the > output redirection token. For more information, see the **ZebOS Command Line Interface Environment** chapter.

Note: This command is available only if **--enable-pece-ospf** configuration option is enabled when compiling ZebOS.

Command Syntax

```
show ip vrf
```
OSPF VPN Commands

Command Mode
Exec mode and Privileged Exec mode

Usage
The following is a sample output of the `show ip vrf` command displaying the VRF information and the Process IDs of OSPF instances:

<table>
<thead>
<tr>
<th>Name</th>
<th>OSPF PID</th>
<th>Interface List</th>
</tr>
</thead>
<tbody>
<tr>
<td>qa</td>
<td>3</td>
<td>eth0</td>
</tr>
<tr>
<td>you</td>
<td>4</td>
<td>eth1</td>
</tr>
<tr>
<td>ipi</td>
<td>5</td>
<td>eth2</td>
</tr>
</tbody>
</table>

Examples

ZebOS# show ip vrf

`show ip vrf NAME`

Use this command to display VRF information for a specified VRF instance.

To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Note: This command is available only if `--enable-pece-ospf` configuration option is enabled when compiling ZebOS.

Command Syntax

```
show ip vrf NAME
```

NAME Specify the VRF name to be associated with this OSPF instance.

Command Mode
Exec mode and Privileged Exec mode

Usage
The following is a sample output of the `show ip vrf NAME` command displaying VRF information for VRF instance named `ipi`.

```
------------------
ZebOS# show ip vrf ipi
VRF ipi; (id=3); OSPF PID is 5
------------------
```

Examples

```
ZebOS# show ip vrf VRF1
```
CHAPTER 5 CSPF-TE Commands

This chapter provides an alphabetized reference for each of the CSPF-TE commands.

capability cspf

Use this command to enable CSPF functionality for an OSPFv2 or OSPFv3 instance. Only one CSPF instance is supported in this release.

Use the no parameter with this command to disable CSPF functionality for the OSPFv2 or OSPFv3 instance.

Command Syntax

(no) capability cspf

Command Mode
Router mode

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# capability cspf

ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# capability cspf

capability te

Use this command to enable the ZebOS traffic engineering feature for an OSPFv2 or OSPFv3 instance. The ZebOS process generates TE LSAs for each link it is configured for.

Use the no parameter with this command to disable the traffic engineering feature.

Command Syntax

(no) capability te

Default
Enabled

Command Mode
Router mode

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# capability te
CSPF-TE Commands

ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# capability te

Related Commands
show ip ospf te-database, show ipv6 ospf te-database

cspf default-retry-interval
Use this command to set the default route computation retry interval (in seconds) for an OSPFv2 or OSPFv3 instance. This value is used for route recomputation (in the case of computation failures) and no retry interval is specified for a given LSP.
Use the no parameter with this command to unset default route computation retry interval.

Command Syntax
(no) cspf default-retry-interval <1-3600>
<1-3600> The retry interval in seconds. The default interval value is 10 seconds.

Command Mode
Router mode

Examples
ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# cspf default-retry-interval 720

ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# cspf default-retry-interval 720

cspf tie-break
Use this command to set the tie-break method to one of the values (random, least-fill, most-fill) for an OSPFv2 or OSPFv3 instance. This selects a link (during route computation) when more than one candidate link satisfies all the route constraints, the associated cost and hop limit link attributes are equal.
Use the no parameter with this command to unset tie-break method.

Command Syntax
(no) cspf tie-break (random|least-fill|most-fill)
random To pick any path at random. This is the default tie-break method.
least-fill To specify preferred path to be the one with the largest minimum available bandwidth ratio.
most-fill To specify preferred path to be the one with smallest minimum available bandwidth ratio.

Default
By default, the tie-break method is set to random.

Command Mode
Router mode
Usage

The random tie-break method places an equal number of LSPs on each link, without taking into account the available bandwidth ratio. The least-fill method equalizes the reservation on each link. The most-fill method uses one link till it is full completely and then uses the next link.

Examples

ZebOS# configure terminal
ZebOS(config)# router ospf 100
ZebOS(config-router)# cspf tie-break least-fill

ZebOS# configure terminal
ZebOS(config)# router ipv6 ospf
ZebOS(config-router)# cspf tie-break least-fill

debug cspf events

Use this command to enable CSPF events debugging option.
Use the \texttt{no} parameter with this command to disable this function.

Command Syntax

\begin{verbatim}
(no) debug cspf events
\end{verbatim}

Command mode

Exec and Privileged Exec modes

Usage

Following is a sample output section from the \texttt{debug cspf events} command. Some of the lines in this sample display have wrapped, please note that in the actual output the lines may not wrap.

ZebOS# debug cspf events

ZebOS#terminal monitor

ZebOS# 2002/03/19 15:17:29 OSPF: cspf_api_msg_delete_recv: Delete message received from client 2
2002/03/19 15:17:29 OSPF: cspf_api_msg_delete_process: Client = 2, lspid = 0x8000
2002/03/19 15:17:29 OSPF: cspf_api_msg_request_recv: Route request message received from client 2
2002/03/19 15:17:29 OSPF: cspf_api_msg_request_process: Client = 2, request type = 1, ingress = 192.40.40.3, egress = 192.20.20.1, lspid = 0x8000
2002/03/19 15:17:29 OSPF: cspf_compute_route: lspid = 0x8000, setup priority = 7, ingress = 192.40.40.3, egress = 192.20.20.1, hop limit constraint = 255, bandwidth constraint = 125000.000000, include mask = 0x0, exclude mask = 0x0, path constraint count = 0
....
2002/03/19 15:17:34 OSPF: cspf_process_network_lsa_vertex: Vertex id = 192.20.20.2, dest addr = 192.20.20.1
2002/03/19 15:17:34 OSPF: cspf_api_msg_established_recv: LSP Established message received from client 2
2002/03/19 15:17:34 OSPF: cspf_api_msg_established_process: Client = 2, lspid = 0x8000, metric = 0
CSPF-TE Commands

Examples

ZebOS# debug cspf events

dep cspf hexdump

Use this command to enable CSPF message hexdump debugging option.
Use the no parameter with this command to disable this function.

Command Syntax

(no) debug cspf hexdump

Command Mode

Exec and Privileged Exec mode

Examples

ZebOS# debug cspf hexdump

show cspf ipv6 lsp

Use this command to display information about all the LSPs stored in the CSPF database for all OSPFv3 instances.
To modify the lines displayed, use the | (output modifier token); to save the output to a file use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

show cspf ipv6 lsp

Command mode

Exec and Privileged Exec mode

Usage

Following is a sample output from the show cspf ipv6 lsp command.

ZebOS# show cspf ipv6 lsp
Lsp Id : 0x650065
Ingress : 2001:5152::1
Egress : 2001:5154::1
Ext Tunnel ID: 2001:5152::1
LSP Type : 0
Client ID : 3
State : 2
Setup Priority: 7
Hold Priority : 0
Hop Limit : 255
Include Mask : 0x0
Exclude Mask : 0x0
LSP Metric : 0
Computed ERO :
 3ffe:1::2
Examples

ZebOS# show cspf ipv6 lsp

show cspf lsp

Use this command to display information about all the LSPs stored in CSPF database.

To modify the lines displayed, use the | (output modifier token); to save the output to a file use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show cspf lsp

Command mode

Exec and Privileged Exec mode

Usage

Following is a sample output from the `show cspf lsp` command.

ZebOS# show cspf lsp
Lsp Id : 0xbfe0
 Client ID : 2
 State : 2
 Ingress : 192.40.40.3
 Egress : 192.20.20.1
 Setup Priority : 7
 Hold Priority: 0
 Bandwidth : 10.000 Kbits/s
 Hop Limit : 255
 Retry Interval: 5
 Retry Limit : 3
 LSP Metric : 20
 Computed ERO:
 192.40.40.2
 192.20.20.1

Examples

ZebOS# show cspf lsp

show debugging cspf

Use this command to display the CSPF debugging options set.

To modify the lines displayed, use the | (output modifier token); to save the output to a file use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

Command Syntax

 show debugging cspf
CSPF-TE Commands

Command node
Exec and Privileged Exec mode

Usage
Following is a sample output section from the `show debugging cspf` command. Some of the lines in this sample display have wrapped, please note that in the actual output the lines may not wrap.

```
ZebOS# show debugging cspf
CSPF debugging status:
CSPF events debugging is on
```

```
ZebOS# 2002/03/27 17:09:21 OSPF: cspf_api_msg_delete_recv: Delete message received from client 2
2002/03/27 17:09:21 OSPF: cspf_api_msg_delete_process: Client = 2, lspid = 0x8000
2002/03/27 17:09:21 OSPF: cspf_api_msg_request_recv: Route request message received from client 2
... 2002/03/27 17:09:21 OSPF: cspf_process_network_lsa_vertex: Vertex id = 192.10.10.9, dest addr = 192.20.20.1
2002/03/27 17:09:21 OSPF: cspf_process_network_lsa_vertex: Vertex id = 192.20.20.2, dest addr = 192.20.20.1
2002/03/27 17:09:21 OSPF: cspf_api_msg_established_recv: LSP Established message received from client 2
2002/03/27 17:09:21 OSPF: cspf_api_msg_established_process: Client = 2, lspid = 0x8000, metric = 0
```

Examples
```
ZebOS# show debugging cspf
```

show ip ospf te-database

Use this command to display the traffic engineering database contents for all ospf instances.

To modify the lines displayed, use the `|` (output modifier token) ; to save the output to a file, use the `>` output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.

The alternate form of this command displays traffic engineering database for specified ospf instance. This form is enabled only if OSPF virtual router feature is disabled.

Command Syntax
```
    show ip ospf te-database
    show ip ospf <0-65535> te-database
```

Command mode
Exec and Privileged Exec mode

Usage
Following is a sample output from the `show ip ospf te-database` command.

```
ZebOS# show ip ospf te-database
LS Age : 2
```
Options : 0x2
LS Type : 10 (Area-Local Opaque-LSA)
Opaque Type : 1
Instance : 0xffff
Advertising Router : 192.10.10.1
LS Sequence Number : 0x8000005a
LS Checksum : 0xfb4f
Length : 28
Router Address : 192.10.10.1

LS Age : 2
Options : 0x2
LS Type : 10 (Area-Local Opaque-LSA)
Opaque Type : 1
Instance : 0x3
Advertising Router : 192.10.10.1
LS Sequence Number : 0x8000002e
LS Checksum : 0x3ef
Length : 124
Link Type : Multiaccess
Link ID : 192.20.20.2
Local Interface Addresses :
 192.20.20.1
Remote Interface Addresses :
 192.20.20.2
Te Metric : 10
Max Bandwidth : 10000.000 Kbits/s
Max Reservable Bandwidth : 1000.000 Kbits/s
Available Bandwidth :
 Priority 0 : 1000.000 Kbits/s
 Priority 1 : 1000.000 Kbits/s
 Priority 2 : 1000.000 Kbits/s
 Priority 3 : 1000.000 Kbits/s
 Priority 4 : 1000.000 Kbits/s
 Priority 5 : 1000.000 Kbits/s
 Priority 6 : 1000.000 Kbits/s
 Priority 7 : 1000.000 Kbits/s
Resource Color : 0x3

Examples
 ZebOS# show ip ospf te-database
 ZebOS# show ip ospf 535 te-database

show ipv6 ospf te-database

Use this command to display the traffic engineering database contents for all OSPFv3 instances.
To modify the lines displayed, use the | (output modifier token); to save the output to a file, use the > output redirection token. For more information, see the ZebOS Command Line Interface Environment chapter.
CSPF-TE Commands

The alternate form of this command displays traffic engineering database for the specified OSPFv3 instance. This form is enabled only if the OSPFv3 virtual router feature is disabled.

Command Syntax

show ipv6 ospf te-database
show ipv6 ospf WORD te-database

WORD Specified OSPFv3 instance.

Command mode

Exec and Privileged Exec mode

Usage

Following is a sample output from the show ipv6 ospf te-database command.

```
ZebOS# show ipv6 ospf te-database
LS Age : 12
LS Type : 10 (Intra-Area-Te-LSA)
Instance : 0x3
Advertising Router : 4.4.4.4
LS Sequence Number : 0x8000004d
LS Checksum : 0xf58a
Length : 164
Router Address : 2001:5152::1

LS Age : 12
LS Type : 10 (Intra-Area-Te-LSA)
Instance : 0x3
Advertising Router : 4.4.4.4
LS Sequence Number : 0x8000004d
LS Checksum : 0xf58a
Length : 164
Link Type : Multiaccess
Neighbor Interface ID : 135450284
Neighbor Router ID : 4.4.4.4
Local Interface Addresses :
  3ffe:1::1
Remote Interface Addresses :
  ::
Te Metric : 0
Max Bandwidth : 100000.000 Kbits/s
Max Reservable Bandwidth : 100000.000 Kbits/s
Available Bandwidth :
  Priority 0 : 100000.000 Kbits/s
  Priority 1 : 100000.000 Kbits/s
  Priority 2 : 100000.000 Kbits/s
  Priority 3 : 100000.000 Kbits/s
  Priority 4 : 100000.000 Kbits/s
  Priority 5 : 100000.000 Kbits/s
  Priority 6 : 100000.000 Kbits/s
  Priority 7 : 100000.000 Kbits/s
```
Examples
 ZebOS# show ipv6 ospf te-database
 ZebOS# show ipv6 ospf 535 te-database

undebug cspf events

Use this command to disable CSPF events debugging option.

Command Syntax
 undebug cspf events

Command mode
Privileged Exec mode

Examples
 ZebOS# undebug cspf events

undebug cspf hexdump

Use this command to disable the CSPF message hexdump debugging option.

Command Syntax
 undebug cspf hexdump

Command Mode
Privileged Exec mode

Examples
 ZebOS# undebug cspf hexdump
Symbols

, meaning in command syntax notation 4
?, meaning in command syntax notation 4
(), meaning in command syntax notation 4
|, meaning in command syntax notation 4

A

abbreviated commands 2
about this command reference 1
ABRs 21, 84
abr-type 48, 83
access-class 17
 see ZebOS NSM Command Reference
access-list
 see ZebOS NSM Command Reference
access-list extended
 see ZebOS NSM Command Reference
access-list standard
 see ZebOS NSM Command Reference
Angle brackets 4
area
 area multi-area-adjacency 19
 authentication 17
default-cost 17, 83
nssa 19
range 21
shortcut 21
stub 22
virtual-link 23
Area Border Routers 21, 84
area command
 stub 85
area id 100
area range command 84
area virtual-link command 85
authentication commands
 ip ospf authentication 36
 ip ospf authentication-key 37
 ip ospf message-digest-key 41
auto-cost reference-bandwidth 24, 86

B

banner motd
 see ZebOS NSM Command Reference
braces, meaning in command syntax notation 4

C

capability cspf 119
capability opaque command 25
capability restart 87
capability restart command 25
capability te command 88
change mtu size 42
cisco abr-type 48, 83
clear and restart OSPF process 26, 88
clear ip ospf process 26, 88
clear ip prefix-list
 see ZebOS NSM Command Reference
command abbreviation 2
command abbreviations 2
command completion 2
command description format 6
 command name 6
 command syntax 6
default command value 6
dommand mode 6
equivalent commands 6
example 6
related commands description 6
usage 6
validation commands 6
command errors 3
command example description 6
command line help 1
command line interface
 online help access 1
 syntax 2
command mode description 6
Command Modes
 illustration ospfd modes 11
 line 11
 route-map 11
 router 11
command modes 11
definitions 10
 illustration ospf commands 11
command name format 6
command negation 6
command nodes
 see command modes 10
command reference primer 4
typographic conventions 4
command syntax format 6
command usage description 6
common commands 12
 see ZebOS NSM Command Reference
 access-class
 banner motd
clear ip prefix-list
description
enable
help
ip prefix-list
line-vty
match as-path
password
quit
route-map
service advanced-vty
terminal length
who
compatible rfc1583 26
configure a stub host entry 36
configure terminal
 see ZebOS NSM Command Reference
Configure, command mode definition 10
copy running-config startup-config
 see ZebOS NSM Command Reference
cspf default-retry-interval 120
cspf tie-break 120
CSPF-TE Commands
 capability cspf 119, 123
capability te 119
cspf default-retry-interval 120
cspf tie-break 120
dbg cspf events 121
debug cspf hexdump 122, 127
show cspf ipv6 lsp 122
show cspf lsp 123
show debugging cspf 123
show ip ospf te-database 124

dead-interval 93
dbg cspf events 121
dbg cspf hexdump 122, 127
dbg ipv6 ospf
 ifsm 89
 lsa 90
 nfsm 90
 nsm 92
 packet 91
 route 91
dbg ipv6 ospf nsm command 90
dbg ospf
 events 26, 79, 89
 ism 27, 80, 112
 lsa 28, 80, 113
 nsm 28, 80, 113
 packet 29, 81, 114
 route 30, 82, 114
 zebos 29, 81, 114
dbg ospf6
 ism 89
dbg ospf6 ism 89
dbg ospf6 packet 91
default command value 6
default-information originate 31
default-metric 31
default-metric command 92
description 32
 see ZebOS NSM Command Reference
disable
 see ZebOS NSM Command Reference
display route single-line 94
distance (OSPF command) 32
distance ospf 32
distribute-list 33
domain-id 34
dot (period), meaning in command syntax notation 4

e
enable
 see ZebOS NSM Command Reference
enable db-summary-opt 35
enable db-summary-opt OSPFv3 command 92
enable ext-ospf-multi-inst 35
enable opaque LSA 25
enable password
 see ZebOS NSM Command Reference
enable restart signaling 25
enabling CSPF 123
enabling te 119
d
end
 see ZebOS NSM Command Reference
equal sign, meaning in command syntax notation 4
equivalent commands description 6
events parameter 27, 80, 112
exec, command mode definition 10
exec-timeout
 see ZebOS NSM Command Reference
exit
 see ZebOS NSM Command Reference
f
flooding 28, 80, 113

G
generate 28, 80, 113
graceful restart commands
capability restart 25
ospf restart grace-period 49
ospf restart helper 49
restart ospf graceful 54

H
hello packet 29, 81, 114
help
 see ZebOS NSM Command Reference
host area command 36
hostname
 see ZebOS NSM Command Reference
how to enter 11

I

ibm abr-type 48, 83
IFNAME, meaning in command syntax notation 5
IFSM
 events 89
 status 89
 timers 89
Interface, command mode definition 10
ip ospf
 mtu 42
 network 43
 transmit-delay 45
ip ospf authentication command 36
ip ospf authentication-key command 37
ip ospf cost command 38
ip ospf database-filter command 38
ip ospf dead-interval command 39
ip ospf disable all command 40
ip ospf hello-interval command 40
ip ospf message-digest-key 41
ip ospf mtu 42
ip ospf mtu-ignore command 42
ip ospf priority command 43
ip ospf retransmit-interval command 45
ip prefix-list
 see ZebOS NSM Command Reference
ipv6 access-class
 see ZebOS NSM Command Reference
ipv6 access-list
 see ZebOS NSM Command Reference
ipv6 ospf cost command 93
ipv6 ospf neighbor 95
ipv6 ospf restart grace-period 97
ipv6 ospf restart helper 97
ipv6 ospf6 transmit-delay 99
ipv6 prefix-list
 see ZebOS NSM Command Reference
ipv6 te-metric command 100

L

line command mode 11
Line, command mode definition 10
LINE, meaning in command syntax notation 4
line-vty
 see ZebOS NSM Command Reference
link-state debugging 29, 81, 114
list
 see ZebOS NSM Command Reference
log file
 see ZebOS NSM Command Reference
log record-priority
 see ZebOS NSM Command Reference
log syslog
 see ZebOS NSM Command Reference
log trap
 see ZebOS NSM Command Reference

M

manual
 conventions, procedures and syntax 4
 match as-path
 see ZebOS NSM Command Reference
 match community
 see ZebOS NSM Command Reference
 match extcommunity
 see ZebOS NSM Command Reference
 match interface
 see ZebOS NSM Command Reference
 match ip address
 see ZebOS NSM Command Reference
 match ip address prefix-list
 see ZebOS NSM Command Reference
 match ip next-hop
 see ZebOS NSM Command Reference
 match ip next-hop prefix-list
 see ZebOS NSM Command Reference
 match ipv6 address
 see ZebOS NSM Command Reference
 match ipv6 address prefix-list
 see ZebOS NSM Command Reference
 match ipv6 next-hop
 see ZebOS NSM Command Reference
 match metric
 see ZebOS NSM Command Reference
 match origin
 see ZebOS NSM Command Reference
 match route-type
 see ZebOS NSM Command Reference
 match tag
 see ZebOS NSM Command Reference
 monospaced font, meaning in command syntax notation 4

N

neighbor command 46
network area command 47
nfsm
 events 90
 status 90
 timers 90
no network command 47
no parameter, action of 6
not check MTU size 42
Index

NSM Command Reference
- access-list extended 12
- access-list standard 12

O
- ospf abr-type command 48
- OSPF command modes definition 11
- ospf command modes illustration 11
- OSPF Commands
 - access-class 17
 - area multi-area-adjacency 19
 - area nsaa 19
 - capability restart 25
 - debug ospf route 30, 82, 114
 - debug ospf6 route 91
 - debug ospf6 zebos 92
 - overflow database external 51, 52
 - passive-interface 52, 101
 - restart grace-period 49
 - restart helper 49
 - restart ospf graceful 54
 - show ip ospf multi-area-adjacencies 58
 - show ip ospf virtual-links 76
 - te-metric 78
- ospf retransmit-interval 50
- ospf router-id 50
- OSPF VPN Commands
 - router ospf vrf 117
 - show ip vrf 117
 - show ip vrf NAME 118
- OSPFv3 Commands
 - area default-cost 83
 - area range 84
 - area stub 85
 - area virtual-link 85
 - capability restart 87
 - capability te 88
 - debug ipv6 ospf ifsm 89
 - debug ipv6 ospf lsa 90
 - debug ipv6 ospf nsm 90
 - debug ipv6 ospf packet 91
 - debug ipv6 ospf route 91
 - debug ospf6 ism 89
 - default-metric 92
 - dipv6 ospf retransmit-interval 98
 - enable db-summary-opt 92
 - ipv6 ospf cost 93
 - ipv6 ospf dead-interval 93
 - ipv6 ospf display route single-line 94
 - ipv6 ospf hello-interval 94
 - ipv6 ospf neighbor 95
 - ipv6 ospf priority 96
 - ipv6 ospf restart grace-period 97
 - ipv6 ospf restart helper 97
 - ipv6 ospf transmit-delay 99
 - ipv6 ospf6 transmit-delay 99
 - ipv6 router ospf area 100

ipv6 te-metric 100
passive-interface 101
redistribute 102
restart ipv6 ospf graceful 103
route-map 103
router ipv6 ospf 104
router-id 103
set metric 105
show debugging ipv6 ospf 105
show ipv6 ospf 105
show ipv6 ospf database 103
show ipv6 ospf interface 107
show ipv6 ospf neighbor 108
show ipv6 ospf route 108
show ipv6 ospf topology 110
show ipv6 ospf virtual-links 110
show ipv6 ospf6 interface 107
timers spf 111
other conventions 7
overflow database 51
overflow database external 51, 52

P
- parameter expansion 7
- parenthesis not part of command 4
- passive-interface 52, 101
- password 17
- see ZebOS NSM Command Reference
- priority 96
Privileged Exec, command mode definition 10
proportional font, meaning in command syntax notation 4

Q
- Question mark 4
- quit
 - see ZebOS NSM Command Reference

R
- redistribute 102
- redistribute command 53
- redistribute ospf command 53
- refresh 28, 80, 113
- restart grace-period command 49
- restart helper command 49
- restart ipv6 ospf graceful 103
- restart ospf graceful command 54
- retransmit-interval 98
- rfc 2328 48, 83
- rfc 3509 48, 83
- route-map 103
- see ZebOS NSM Command Reference
route-map command mode 11
router command mode 11
router ipv6 ospf 104
router ospf 55
router ospf vrf 117
router-id 55, 103

S

service advanced-vty
 see ZebOS NSM Command Reference
service password-encryption
 see ZebOS NSM Command Reference
service terminal-length
 see ZebOS NSM Command Reference
set aggregator
 see ZebOS NSM Command Reference
set as-path
 see ZebOS NSM Command Reference
set atomic-aggregate
 see ZebOS NSM Command Reference
set comm-list delete
 see ZebOS NSM Command Reference
set community
 see ZebOS NSM Command Reference
set community-additive
 see ZebOS NSM Command Reference
set dampening
 see ZebOS NSM Command Reference
set extcommunity
 see ZebOS NSM Command Reference
set ip next-hop
 see ZebOS NSM Command Reference
set ipv6 next-hop
 see ZebOS NSM Command Reference
set metric 105
 see ZebOS NSM Command Reference
set metric-type
 see ZebOS NSM Command Reference
set next-hop
 see ZebOS NSM Command Reference
set origin
 see ZebOS NSM Command Reference
set originator-id
 see ZebOS NSM Command Reference
set tag
 see ZebOS NSM Command Reference
set vpng4 next-hop
 see ZebOS NSM Command Reference
set weight
 see ZebOS NSM Command Reference
shortcut abr-type 48
show access-list
 see ZebOS NSM Command Reference
show cli
 see ZebOS NSM Command Reference
show command tokens 8
 output modifiers 8
show cs pf ipv6 lsp 122
show cs pf lsp 123
show debugging cs pf 123
show debugging ipv6 ospf 105
show debugging ospf 56
show history

see ZebOS NSM Command Reference
show ip ospf 56
border routers 59
database -- multiple instance 59
interface 72
multi-area-adjacencies 58
--multiple instance 59
neighbor 73
route 75
virtual-links 76
show ip ospf database
asbr-summary 61
external 62
network 63
nssa-external 65
opaque-area 66
opaque-as 67
opaque-link 68
router 68
show ip ospf database asbr-summary 61
summary 70
show ip ospf igp-shortcut-lsp 72
show ip ospf igp-shortcut-route 72
show ip ospf te-database 124
show ip ospf virtual-links command 76
show ip prefix-list
 see ZebOS NSM Command Reference
show ip protocols 76
show ip vrf 117
show ip vrf NAME 118
show ipv6 ospf 105
show ipv6 ospf database 103
show ipv6 ospf database, router 103
show ipv6 ospf interface 107
show ipv6 ospf neighbor 108
show ipv6 ospf route 108
show ipv6 ospf topology 110
show ipv6 ospf virtual-links 110
show ipv6 ospf6
 interface 107
show list
 see ZebOS NSM Command Reference
show memory all
 see ZebOS NSM Command Reference
show memory free
 see ZebOS NSM Command Reference
show memory summary
 see ZebOS NSM Command Reference
show route-map
 see ZebOS NSM Command Reference
show running-config
 see ZebOS NSM Command Reference
show startup-config
 see ZebOS NSM Command Reference
show version
 see ZebOS NSM Command Reference
specify cost 38
spf-delay 111
spf-holdtime 111
Index

Square brackets 4
standard abr-type 48, 83
status parameter 27, 80, 112
summary-address 77
syntax conventions 4
syntax help 2
 command abbreviations 2
 command completion 2
 command line errors 3

T

te-metric 78, 100
terminal length
 see ZebOS NSM Command Reference
terminal monitor
 see ZebOS NSM Command Reference
timers parameter 27, 80, 112
timers spf 78, 111
timers spf exp 79, 111
traffic engineering 119
transmit-delay 99
typographic conventions 4

U

UPPERCASE, meaning in command syntax notation 4

V

validation commands description 6
variable parameter expansion 7
vertical bar 4
virtual-link 23, 85
virtual-links display 110
VRF 117

W

who
 see ZebOS NSM Command Reference
WORD, meaning in command syntax notation 5
write file
 see ZebOS NSM Command Reference
write memory
 see ZebOS NSM Command Reference
write terminal
 see ZebOS NSM Command Reference