



# XenDesktop and XenMobile Reference Architecture

This document is intended for IT architects who want to deliver secure business mobility for their organizations. It describes how to use XenDesktop 7.1 together with XenMobile 8.6 to provide users with seamless access to hosted desktops and applications using any device.

**Table of Contents**

|                                             |    |
|---------------------------------------------|----|
| Executive summary                           | 1  |
| Introduction                                | 3  |
| Objective                                   | 3  |
| Summary                                     | 4  |
| Architectural design framework              | 4  |
| User layer                                  | 5  |
| Access layer                                | 5  |
| Resource layer                              | 6  |
| Control layer                               | 6  |
| Hardware layer                              | 6  |
| Hardware                                    | 6  |
| Servers                                     | 6  |
| Networking                                  | 7  |
| Storage                                     | 10 |
| Software                                    | 10 |
| Citrix XenDesktop overview                  | 10 |
| Citrix XenMobile overview                   | 11 |
| Software components                         | 11 |
| Implementing the design                     | 12 |
| Installation considerations and concerns    | 12 |
| Configuring NetScaler                       | 12 |
| StoreFront considerations                   | 12 |
| VDI infrastructure VMs                      | 15 |
| Profile management                          | 15 |
| Provisioning Services                       | 16 |
| Hosted shared desktops                      | 16 |
| VDI – random and static pooled              | 17 |
| XenMobile configuration                     | 17 |
| Test setup and configuration                | 17 |
| Summary                                     | 17 |
| Client test tools                           | 18 |
| Conclusion                                  | 18 |
| Appendix A: NetScaler configuration screens | 19 |
| Creating VIP to StoreFront for XenDesktop   | 19 |
| Configuring load balancing                  | 20 |

Today's technology has created a more mobile user who wants access to their data from anywhere, with their choice of device. Citrix® addresses this need with the concept of a mobile workspace, providing secure access to desktops, applications and data, anytime, anywhere. XenDesktop® with FlexCast® technology and Citrix Receiver™ provide a key component of the mobile workspace, allowing users to connect from any device. However smartphones and tablets bring another dimension to endpoint devices. Smartphone users want access to mail, web sites, and files, but access from untrusted devices can raise serious security and compliance concerns. XenMobile® reduces this risk with enterprise grade mobile device management, mobile application management and mobile productivity apps. XenMobile and XenDesktop together provide a truly comprehensive solution for business mobility. To achieve this, XenMobile is deployed to better empower smartphones and tablets, and is seen as yet another component in the FlexCast model.

When designing a virtual desktop solution, there are many considerations to bear in mind, ranging from the type of desktops required, to how users will access the data, and how you build an environment that can grow. For example, does the user require a dedicated persistent desktop, or is a hosted shared desktop the best solution? Successful deployment of virtual desktops relies on users having a positive experience: this means getting the correct type of desktop to each user. With Citrix® FlexCast®, multiple desktop types and access methods are supported.

The objective of this document is to describe how to build a modular environment to deliver desktops and applications to local, remote, and mobile users, supporting both XenDesktop® and XenMobile®. The design of this environment focused not on maximizing the number of users or on maximizing performance, but rather on assessing the number of users that could be supported on a pre-defined set of hardware while still maintaining a positive user experience and providing mobile support to XenMobile users.

## Summary

The goal was to:

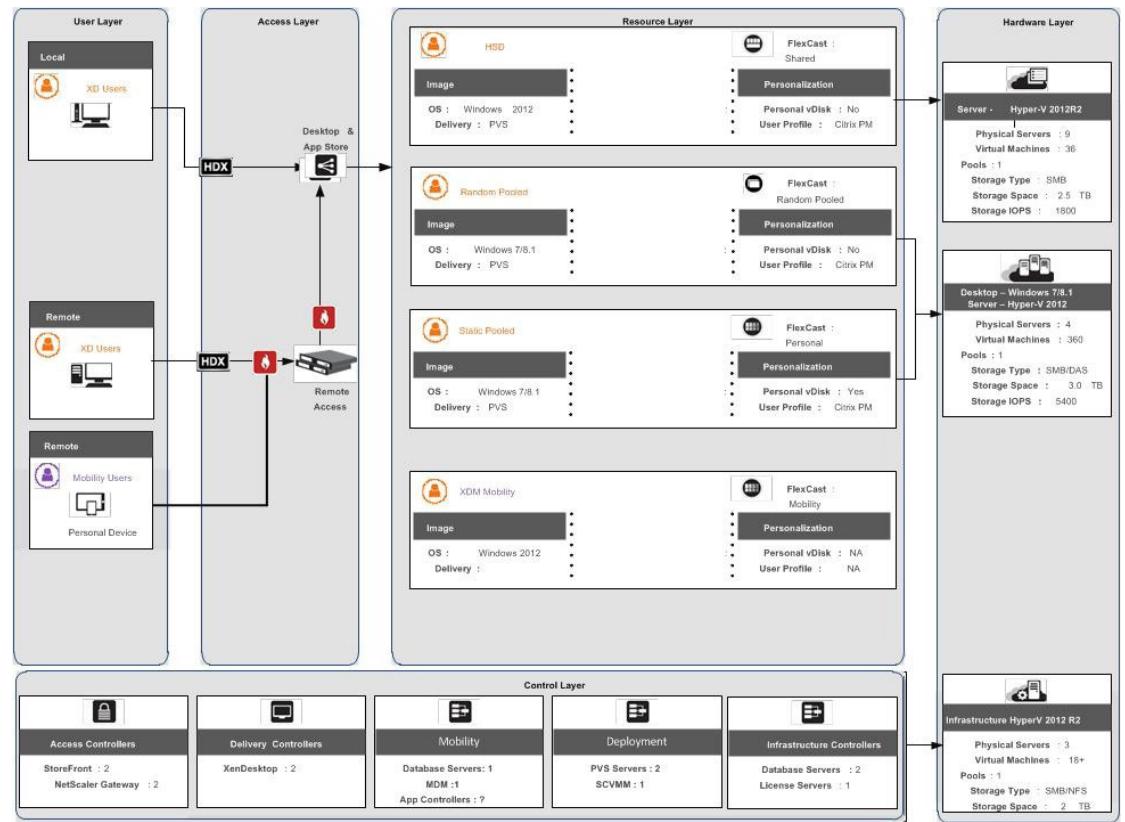
- Create an environment to support remote and local XenDesktop and XenMobile users
- Design a modular solution that allows for growth
- Follow or highlight Citrix best practices and recommendations where possible

HP ProLiant BL460c Gen8 blades and an EMC VNX 8000 were used to build the first module. Microsoft Windows Server 2012 R2 with the Hyper-V role was used as the base hypervisor. The number of supported users was determined by the mix of HSD (hosted shared desktops) and HVD (hosted virtual desktops – VDI): a mix of 80/20 HSD/HVD was used. A cluster of two servers was created in the first module to support the XenDesktop infrastructure VMs (XD Broker, SQL, license server, Provisioning Services, etc.). The infrastructure configuration will support two or three additional modules. However, additional SCVMM and Provisioning Services VMs may be required depending on the HSD/HVD ratio.

XenMobile was configured to support 1000 mobility devices, that is, about 50% of the XenDesktop users in the first module. A third single server was added to support the XenMobile infrastructure (Mobile Device Manager, AppController).

To handle installation and initial configuration two servers were configured to run the root Active Directory, SCVMM, and Windows Deployment Services. These were outside the modules.

Our design proved capable of supporting a mix of just over 2000 HSD and HVD users in a single module along with 1000 XenMobile users. The number of XenApp/XenDesktop users is flexible depending on user workload and the distribution of HSD compared to HVD users.


## Architectural design framework

The architectural goal was to create a modular design that could grow easily while supporting both local and remote XenDesktop users as well as XenMobile users, using the Citrix 5-layer blueprint<sup>1</sup>. The blueprint breaks down the architecture into:

- User layer
- Access layer
- Resource layer
- Control layer
- Hardware layer

<sup>1</sup>[http://support.citrix.com/servlet/KbServlet/download/35715-102-706600/XD7%252520-%252520Blueprint\\_v4.pdf](http://support.citrix.com/servlet/KbServlet/download/35715-102-706600/XD7%252520-%252520Blueprint_v4.pdf)

The design was as follows:



### User layer

The user layer defines the different user groups and how they access their desktops. In this design the users were:

- Remote (20%) or local (80%) users
- Assigned a hosted shared desktop (80%), a random pooled desktop (10%) or a static pooled desktop with a personal vDisk (10%).

Every user in a company has the potential to be a mobile user at any point in time; however, we specified a number of 1000 steady-state mobility users. The infrastructure requirements for XenMobile Device Manager/AppController do not increase significantly between 1000 and 8000 users.

### Access layer

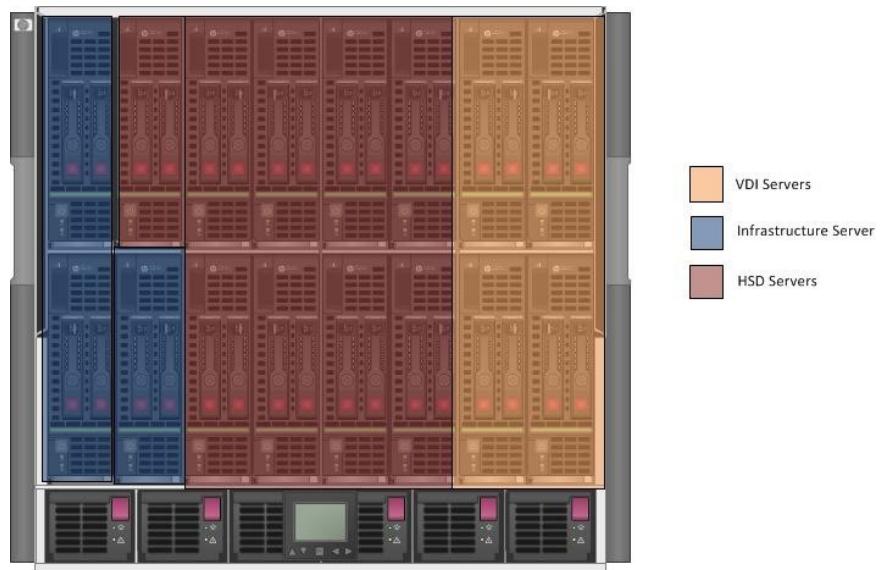
The access layer defines how a user accesses the resources. In this architecture two NetScaler® 10500 systems in an active/passive configuration managed access for all remote users, directing them either to redundant StoreFront VMs to access a desktop, or to the XenMobile environment if they were mobile users. Internal users had direct access to the StoreFront VMs.

### Resource layer

The resource layer defines the virtual desktops, applications, or XenMobile environment for the users. Desktops in this design consisted of:

- Hosted shared desktops (HSD)
- Random pooled desktops
- Static pooled desktops with a personal vDisk

### Control layer


The control layer defines the infrastructure VMs required to support the users in accessing their resources. For XenDesktop, redundant VMs were created for StoreFront, the XenDesktop Broker, Provisioning Services, and SQL databases. For XenMobile a database server, a Mobile Device Manager (MDM), and redundant App Controllers were configured.

### Hardware layer

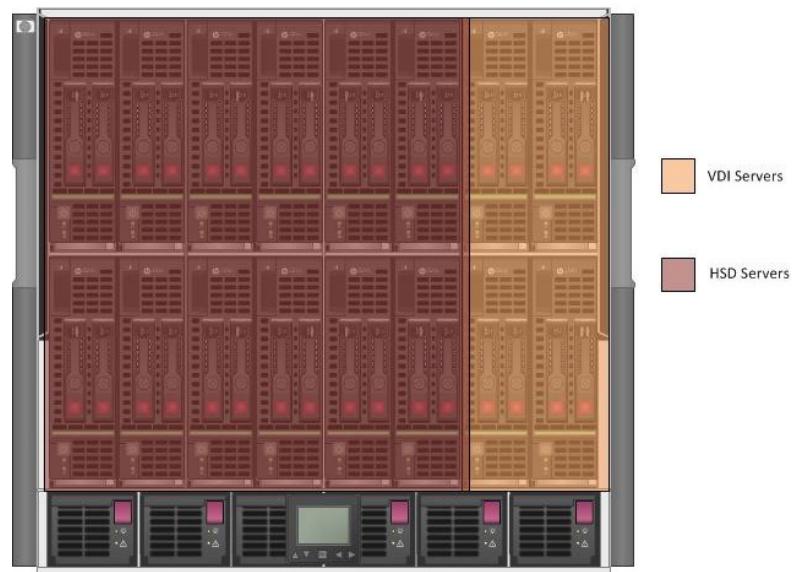
The hardware layer defines the physical implementation required to support the solution. In the hardware layer in this design, three clusters of servers were created:

- HSD cluster
- VDI cluster
- Infrastructure cluster

### Hardware



In the diagram above hardware is shown only as servers; however, hardware also includes networking and storage.


## Servers

In the hardware layer, each server blade was configured as follows:

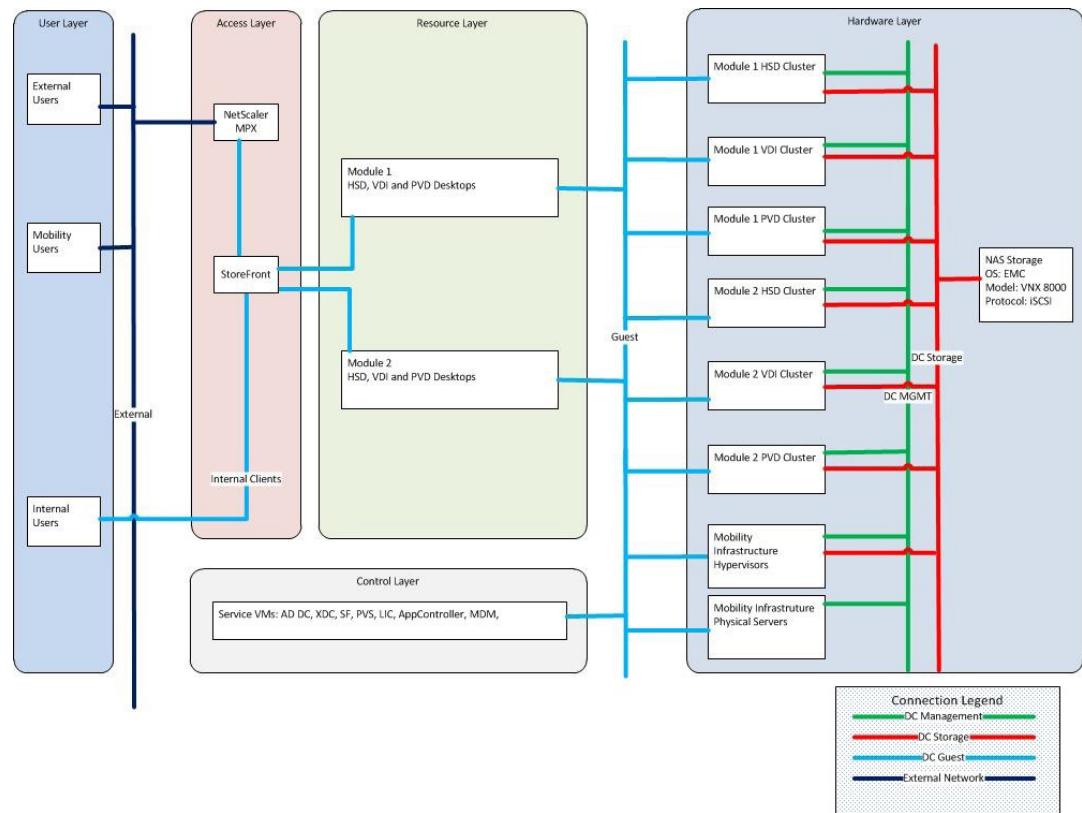
Three blades were configured in a cluster to support the control layer VMs. This configuration allows a physical server to fail without affecting the user experience. To support the HSD, nine physical servers were configured in a cluster, and two two-server clusters were created to support the VDI servers.

A second enclosure of servers can be added, leveraging the infrastructure VMs in the first enclosure, as shown below:

### Additional Enclosures



In this scenario 12 blades are dedicated to HSDs, two blades to random pooled, and two blades to static pooled with personal vDisk. The total number of users supported depends on how many HSD as opposed to VDI servers are configured. It may be necessary to run some additional Provisioning Services or SCVMM servers on the second enclosure for better performance. To prevent underutilization of a physical server, the additional infrastructure servers were run on the HSD cluster of physical servers, reducing the number of HSD VMs by one for each infrastructure VM. These additional infrastructure VMs were part of the sites defined in the primary enclosure.


In this architecture, all blades were HP BL460c Gen8 blades with:

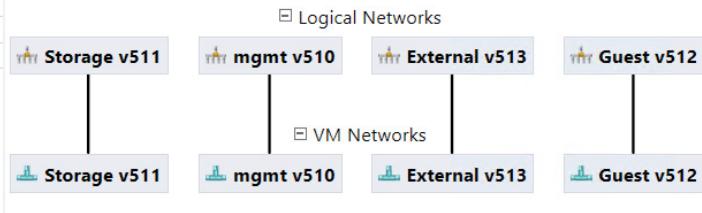
- CPU: 2 x Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz (8 Cores), HyperThreading enabled and the Power/Performance profile set to high
- Memory: 192 GB
- Disk: two 300 GB HDD, Raid 1, to hold the Windows Server 2012 R2 operating system

## Networking

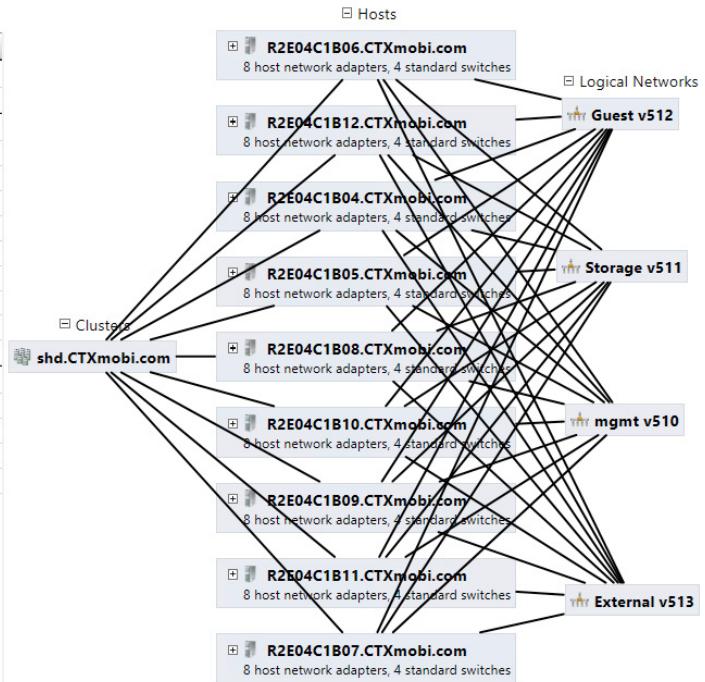
Networking was based on using four VLANs at the physical level, and creating a single VM network within Hyper-V to connect the VMs to the correct VLANs.

The four VLANs fit into the different layers as follows:

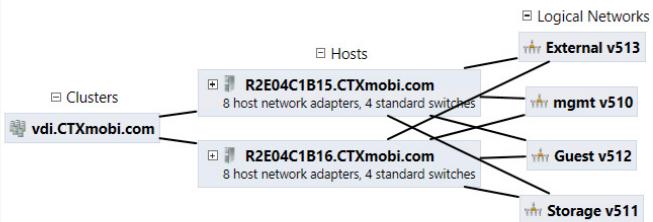



At the physical layer four networks were created:

- DC Management – 3 GBps, for handling infrastructure network traffic
- DC Storage – 5 GBps, for storage to server networking
- DC Guest – 7 GBps, for internal user network traffic
- External – 5 GBps, for connecting to the Internet from NetScalers


HP's Virtual Connect technology was used to set the network speeds. Within the Hyper-V 2012 R2 environment a VM network was created using SCVMM. Each of the VLANs was defined as a standard switch within Hyper-V. The network adapters in each VM were then connected to the correct standard switch/VLAN using the VM network.

The following diagrams show the Hyper-V network layout:


| Name                    | Type            |
|-------------------------|-----------------|
| ⊖ Type: VM Network      |                 |
| Storage v511            | VM Network      |
| mgmt v510               | VM Network      |
| External v513           | VM Network      |
| Guest v512              | VM Network      |
| ⊖ Type: Logical Network |                 |
| Storage v511            | Logical Network |
| mgmt v510               | Logical Network |
| External v513           | Logical Network |
| Guest v512              | Logical Network |



| Name                    | Type            |
|-------------------------|-----------------|
| ⊖ Type: Host Cluster    |                 |
| shd.CTXmobi.com         | Host Cluster    |
| ⊖ Type: Host            |                 |
| R2E04C1B07.CTXmobi...   | Host            |
| R2E04C1B11.CTXmobi...   | Host            |
| R2E04C1B09.CTXmobi...   | Host            |
| R2E04C1B10.CTXmobi...   | Host            |
| R2E04C1B04.CTXmobi...   | Host            |
| R2E04C1B05.CTXmobi...   | Host            |
| R2E04C1B12.CTXmobi...   | Host            |
| R2E04C1B06.CTXmobi...   | Host            |
| R2E04C1B13.CTXmobi...   | Host            |
| ⊖ Type: Logical Network |                 |
| Guest v512              | Logical Network |
| External v513           | Logical Network |
| mgmt v510               | Logical Network |
| Storage v511            | Logical Network |



| Name                    | Type            |
|-------------------------|-----------------|
| ⊖ Type: Logical Network |                 |
| External v513           | Logical Network |
| Guest v512              | Logical Network |
| mgmt v510               | Logical Network |
| Storage v511            | Logical Network |
| ⊖ Type: Host            |                 |
| R2E04C1B15.CTXmobi...   | Host            |
| R2E04C1B16.CTXmobi...   | Host            |
| ⊖ Type: Host Cluster    |                 |
| vdi.CTXmobi.com         | Host Cluster    |



## Storage

For storage, an existing EMC VNX8000 with 15 shelves of 600 GB 15K drives, two storage processors, and eight data movers were used to support the virtual desktop environment. This storage is more than sufficient to support the storage requirements for this design and could be used to expand user capacity going forward. The iSCSI connections for the virtual desktop environment were served by the two storage processors.

The following tables define the LUNs created:

## Module 1 LUNS

| Type  | Size GB | Purpose                               |
|-------|---------|---------------------------------------|
| iSCSI | 1800    | M1 WS2012 HSD                         |
| iSCSI | 2       | Witness LUN M1 HSD                    |
| iSCSI | 1350    | M1 Win81 VDI                          |
| iSCSI | 2       | Witness LUN M1 VDI                    |
| iSCSI | 2475    | M1 WIN81 VDI + Personal vDisk         |
| iSCSI | 2       | Witness LUN M1 VDI + Personal vDisk   |
| iSCSI | 625     | SCVMM Library                         |
| iSCSI | 3045    | Hyper-V Common Infra                  |
| iSCSI | 2       | Witness LUN M1INFRA                   |
| iSCSI | 2200    | M2 WS2012 HSD                         |
| iSCSI | 2       | Witness LUN M2PVD                     |
| iSCSI | 2025    | M2 Win8 VDI                           |
| iSCSI | 2       | Witness LUN M2PVD                     |
| iSCSI | 2475    | M2 Win8 VDI + Personal vDisk          |
| iSCSI | 2       | Witness LUN M2PVD                     |
| iSCSI | 625     | Provisioning Services 3 vDisk Storage |
| iSCSI | 663     | M2 User Profile                       |

## Software

### Citrix XenDesktop overview

XenDesktop 7 is a reimagining of application and desktop virtualization for the mobile and cloud era that transforms apps and desktops delivery. XenDesktop 7 allows customers to select, configure, and scale more mobile use cases more quickly, easily and economically than ever before.

With XenDesktop 7.1 and the FlexCast Management Architecture, from a single site and a single console, customers can support three generations of Windows Server, from Windows Server 2008 R2 to Windows Server 2012 R2 as well as 16 bit, 32, or 64 bit apps through a combination of Windows 7, Windows 8, or Windows 8.1.

One of the major changes at XenDesktop 7 is the concept of a unified architecture and management for XenApp® and XenDesktop. Unlike previous deployments requiring separate infrastructure for XenApp and XenDesktop, the unification of the architecture enables administrators to design and deploy a single delivery infrastructure for delivering applications (formerly XenApp) and desktops (formerly XenDesktop).

### Citrix XenMobile overview

Deployed alongside XenDesktop or XenApp, XenMobile enhances mobile security by ensuring that all devices—corporate-owned or BYOD—are compliant before they access the enterprise network. With XenMobile, IT administrators gain a centralized tool for managing and controlling BYOD devices used to access corporate resources, including all the desktops and apps delivered through XenApp and XenDesktop. Simply put, XenApp and XenDesktop centralize management of virtual apps and desktops, and XenMobile centralizes the management of BYO and corporate-issued mobile devices. The mobile device management (MDM) solution lets you:

- Enforce password protection for the device's lock screen
- Restrict corporate network access from jailbroken devices and blacklisted applications
- Enable encryption for select applications and data at rest and in motion—an especially important capability if your XenApp and XenDesktop policies enable drive mapping

### Software components

The following table defines the software versions deployed:

| Component                                                                | Version                                                                   |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Virtual desktop broker                                                   | Citrix XenDesktop 7.1                                                     |
| VDI desktop provisioning                                                 | Citrix Provisioning Services™ 7.1                                         |
| Endpoint client                                                          | Citrix Receiver™ for Windows 4.1                                          |
| User profile management                                                  | Citrix Profile management 5.x (included in XenDesktop)                    |
| VDI personalization                                                      | Citrix Personal vDisk 7.1                                                 |
| Web portal                                                               | Citrix StoreFront 2.1                                                     |
| Licensing                                                                | Citrix License Server 11.11.1                                             |
| Workload generator                                                       | Login VSI 4.0.x (4.09)                                                    |
| Office software                                                          | Microsoft Office 2013                                                     |
| Virtual desktop OS (VDI desktops)                                        | Microsoft Windows 8.1 x64                                                 |
| Virtual desktop OS (hosted shared desktops)                              | Microsoft Windows Server 2012 R2                                          |
| Database server for SCVMM, XenDesktop Controllers, Provisioning Services | Microsoft SQL Server 2012 R2                                              |
| Database server for XenMobile Device Manager                             | Microsoft SQL Server 2008 R2                                              |
| VDI hypervisor management                                                | Microsoft SCVMM 2012 R2                                                   |
| VDI hypervisor                                                           | Microsoft Windows Server 2012 R2 with Hyper-V & Failover Clustering Roles |

| Component                 | Version                                          |
|---------------------------|--------------------------------------------------|
| NetScaler software        | Citrix NetScaler 10.1.120.1316.e                 |
| Mobile device management  | Citrix XenMobile Device Manager 8.6              |
| XenMobile App Controller  | Citrix App Controller 2.9                        |
| NetScaler Insight Center™ | Citrix NetScaler VPX™ 10.1.120.13 for XenServer® |

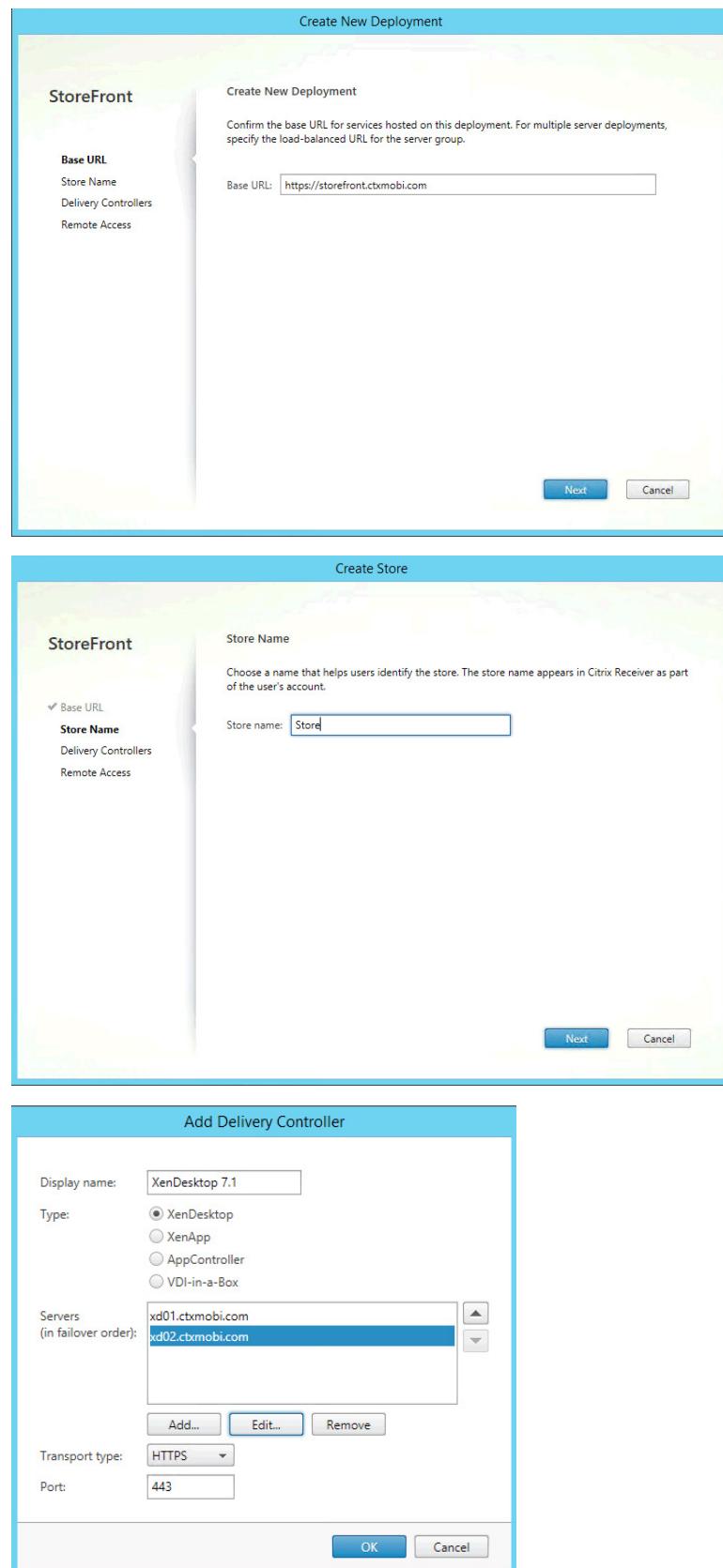
## Implementing the design

### Installation considerations and concerns

As stated previously, the aim of the design was to use existing servers and storage and size the environment to the hardware available. The number of VDI users per physical server was limited by the amount of memory in each physical server. The random pooled and static pooled VMs had 2 GB per VM and the physical servers had 192 GB. The number of users per physical host was set to 90 to ensure that the total assigned memory was less than the total available memory; the aim of this was to provide the best user experience and to use the dynamic memory capabilities of Hyper-V for any sudden changes or increased requirements in the environment.

### Configuring NetScaler

The environment used two NetScaler MPX™-10500 appliances with:


- 8 CPUs
- 2 1GB ports for management
- 16 1GB ports for data

The NetScalers were configured with three Virtual IPs (VIPs): one for the XenDesktop users and two for the XenMobile users. Appendix A shows some of the screen shots from configuring the NetScalers. Some configuration settings worth noting:

- Use the X-Forwarded-For client header as specified in <http://support.citrix.com/article/CTX133185>
- In the LB Services group for StoreFront, modify the persistence method: change it from COOKIEINSERT to SOURCEIP.
- Add a hosts file entry on the StoreFront servers to resolve the URL to its own local IP address.
- For the NetScaler gateway™, the callback URL should be the same as the external access URL: for further details, see <http://support.citrix.com/article/CTX137385>
- On the NetScalers, go under SSL and make sure that the certificate you are using for the AGEE is linked correctly to the intermediate, and that the intermediate is correctly linked to the root certificate.

### StoreFront considerations

Load-balanced StoreFront VMs were configured to provide support for up to two modules and to allow for the potential failure of one of the StoreFront VMs. A basic installation was performed with the StoreFront software, and then a certificate was created to manage authentication and access. The following screens show the configuration:



**Create Store**

**StoreFront**

✓ Base URL  
✓ Store Name  
**Delivery Controllers**  
Remote Access

**Delivery Controllers**  
Specify the delivery controllers and servers for this store.

| Name           | Type       | Servers                   |
|----------------|------------|---------------------------|
| XenDesktop 7.1 | XenDesktop | xd01.cbxmobi.com, xd02... |

Add... Edit... Remove

Back Next Cancel

**Add NetScaler Gateway Appliance**

**StoreFront**

**General Settings**  
Secure Ticket Authority

**General Settings**  
The display name is visible to users in Citrix Receiver preferences.

|                        |                                                                 |
|------------------------|-----------------------------------------------------------------|
| Display name:          | NetScaler ADC 10.1                                              |
| NetScaler Gateway URL: | https://go.cbxmobi.com                                          |
| Version:               | 10.0 (Build 69.4) or later                                      |
| Subnet IP address:     | 172.16.15.254                                                   |
| Logon type:            | Domain                                                          |
| Smart card fallback:   | None                                                            |
| Callback URL:          | https://CallBackInternalVIP /CitrixAuthService/AuthService.asmx |

Next Cancel

**Add NetScaler Gateway Appliance**

**StoreFront**

**Secure Ticket Authority (STA)**  
Issues session tickets in response to application connection requests.

Secure Ticket Authority URLs:  
https://xd01.cbxmobi.com/scripts/ctxsta.dll  
https://xd02.cbxmobi.com/scripts/ctxsta.dll

Add... Edit... Remove

Enable session reliability  
 Request tickets from two STAs, where available

Back Create Cancel

Once the store was deployed, authentication was configured with user name and password and the site domain as the only trusted domain. The StoreFront VMs were joined to a server group, and the NetScaler Gateway appliance was selected with no VPN tunnel.

#### VDI infrastructure VMs

For the infrastructure VMs a Cluster Shared Volume was created between the physical servers to hold the VMs and create a high availability (HA) environment.

### Infrastructure VMs

| VM                       | No.of VMs | OS      | VHD GB | vCPU | Memory GB | Notes                                                                          |
|--------------------------|-----------|---------|--------|------|-----------|--------------------------------------------------------------------------------|
| XD Controller VMs        | 2         | 2012 R2 | 40     | 4    | 8         | XenDesktop brokers                                                             |
| StoreFront               | 2         | 2012 R2 | 40     | 4    | 8         |                                                                                |
| Provisioning Services    | 2         | 2012 R2 | 40     | 4    | 16        |                                                                                |
| License server           | 2         | 2012 R2 | 40     | 2    | 4         | Two license servers: one for Citrix and one for Microsoft                      |
| App Controllers          | 2         | 2012 R2 | 40     | 2    | 4         |                                                                                |
| AD/DNS/DHCP              |           | 2012 R2 |        |      |           | Implemented as physical server to support WDS                                  |
| Mobile device management | 1         | 2012 R2 | 40     | 2    | 8         | Configured for lab environment, need to work with consulting to size correctly |
| SQL                      | 2         | 2012 R2 | 120    | 4    | 12        | AlwaysOn configuration was used for XenApp and XenDesktop                      |
| HDX Insight™             | 1         |         | 240    | 2    | 4         | VM on XenServer 6.2 server                                                     |

The VHD for each VM was created as a dynamic VHD. Two physical hosts were configured with Windows Deployment Services, SCVMM, and SQL AlwaysOn as well as the root Active Directory. This was done to allow the use of Windows Deployment Services and SCVMM for bare-metal deployment of the physical servers. This SCVMM installation was used to manage the entire environment.

Two servers were configured to carry out deployment of the other physical servers. The first server was configured as a root AD/DC server with a single forest/domain and ran DHCP, DNS, NTP, and Certification Authority. The second server was configured with Windows Deployment Services and SCVMM to manage the infrastructure Hyper-V cluster and perform the bare-metal server deployment.

#### Profile management

Profile management 5.0 was used to manage user profiles. It was configured with a separate share to store the profiles, and also configured to leverage Group Policy Management to manage the profiles.

When using personal vDisk, by default the user profile is stored in the personal vDisk file. When using Profile management, in order to save space you should prevent the user profile from being directed into the personal vDisk file by editing the registry as follows:

- KEY: "HKLM\Software\Citrix\personal vDisk\Configuration"
- VALUE: "EnableUserProfileRedirection"
  - 0 = profile is not directed to the personal vDisk
  - 1 = profile is redirected to the personal vDisk (this is the default)

Caution! Using Registry Editor incorrectly can cause serious problems that might require you to reinstall your operating system. Citrix cannot guarantee that problems resulting from the incorrect use of Registry Editor can be solved. Use Registry Editor at your own risk. Be sure to back up the registry before you edit it.

For more details see <http://support.citrix.com/article/CTX131553>.

### Provisioning Services

Provisioning Services 7.1 was used to deploy the VMs. DHCP was configured to run on another domain controller, and PXE was configured to run on the Provisioning Services servers. Please note the following when using Provisioning Services 7.1:

- Best practice is to apply the latest hot fixes from Citrix.
- You must attach a network adapter to a logical network in the template, otherwise VM creation will fail.

### Hosted shared desktops

The HSD VMs were configured as follows:

- 4 vCPU
- 12 GB RAM
- 80 GB VHD
- 25 GB Write Cache File with 24 GB fixed Page File, stored on SAN cluster

Each physical server supported 4 HSD VMs, giving a total of 36 HSD VMs across the nine physical servers in module 1. In our environment each HSD supported 50 users, so 200 users per server were supported with a total of 1800 users for module 1 in our design<sup>2</sup>. The loss of a physical server would mean the loss of four VMs and 200 users. This means that each remaining VM would need to support approximately 6-7 additional users and still remain within the acceptable performance levels.

Each HSD VM was installed with Windows Server 2012 R2. The HSD VMs were configured in a cluster to allow server migration if a physical server needed to be brought down for maintenance. For HA, the overall site was configured so that each HSD VM worked at about 80-90% capacity and if a physical server failed it was not necessary to restart the HSD VMs on different servers immediately because the users would be absorbed by the other VMs in the site. We determined the HSD VM performance using the Mobilizing Windows Apps FlexCast Services Design Guide<sup>3</sup>.

<sup>2</sup>For more information about XenApp scalability see <http://blogs.citrix.com/2013/10/15/xenapp-scalability-v2013-part1/>

<sup>3</sup>[http://www.citrix.com/content/dam/citrix/en\\_us/documents/oth/mobilizing-windows-apps-design-guide.pdf?accessmode=direct](http://www.citrix.com/content/dam/citrix/en_us/documents/oth/mobilizing-windows-apps-design-guide.pdf?accessmode=direct)

## VDI – random and static pooled

Both random and static pooled VMs were configured as follows:

- 2 vCPU
- 2 GB RAM
- 40 GB VHD
- 4 GB Write Cache file with fixed 3GB Page file, stored on SAN cluster
- For static pooled VMs using personal vDisk, the vDisk was 10 GB in size

Two clusters were created: one for random pooled and one for static pooled with personal vDisk.

The physical servers had 192 GB of RAM and each VDI VM had a maximum of 2 GB of RAM. Each physical server supports a maximum of 90 VDI VMs, leaving 12 GB of RAM for the operating system.

## XenMobile configuration

A third physical server was added to the management cluster to support the XenMobile installation. The installation process followed the Citrix Reference Architecture for mobile devices and app management<sup>4</sup>. The installation focused on the MDM for managing devices and the SQL configuration to support MDM. The installation was not configured with HA, although Citrix recommends an HA configuration. Contact your Citrix Consultant for the best approach to building an HA XenMobile installation. The VMs were configured as follows:

| VM                       | No.of VMs | VHD GB | vCPU | Memory GB |
|--------------------------|-----------|--------|------|-----------|
| XenMobile Device Manager | 1         | 40     | 2    | 4         |
| XenMobile SQL Server     | 1         | 40     | 2    | 6         |
| App Controllers          | 1         | 40     | 2    | 4         |

## Test setup and configuration

### Summary

The goal of this test was not to determine the maximum number of users that could be supported, but to follow Citrix best practices and ensure that the environment worked for those numbers and recommendations.

For the infrastructure VMs, the second VM was added strictly for HA purposes; a single VM would have been more than sufficient to support the number of users, and this is also true for the two NetScaler appliances.

As stated previously, the HSD/HVD was an 80/20 mix, with the HVD configured 50/50 between random pooled and static pooled with personal vDisk. For the local/remote mix, 80% were configured as local, 20% as remote, and 1000 XenMobile users were configured.

In the testing there was no intention of stressing or investigating the performance of either XenDesktop or XenMobile, but to show that the two could function successfully in the same data center.

<sup>4</sup>[https://www.citrix.com/content/dam/citrix/en\\_us/documents/products/citrix-reference-architecture-for-mobile-device-and-app-management.pdf](https://www.citrix.com/content/dam/citrix/en_us/documents/products/citrix-reference-architecture-for-mobile-device-and-app-management.pdf)

### Client test tools

To drive the XenDesktop workload, LoginVSI 4.0 was used. 20% of the client launchers were configured to be remote and to connect through the NetScaler; 80% were configured as local users connecting directly to StoreFront. Each client launcher session was configured to support 15 sessions, and each HP BL460c G7 host was configured to support 12 client-launching VMs.

A Citrix-created tool was used to drive the XenMobile workload. This tool simulates a connection between a client device and the App Controller within the data center, creating micro VPN connections through the NetScaler. The tool creates three micro VPNs per connection, so 1000 users create 3000 connections through the NetScaler. With this version of the tool no actual XenMobile applications were started. The test tool simulates IOS, Android, and Windows mobile connections. For our testing a 50/50 mix of IOS and Android connections was used.

### Conclusion

The physical servers had 192 GB of memory, which limited the number of hosted virtual desktop (HVD) users that could be supported per physical server. Each HVD was created with 2 GB of memory, so the number of users per server was restricted to 90 to prevent memory over-commit. Sizing under the memory maximum allowed for taking advantage of memory over-commit if conditions or user counts changed on the physical server.

For our configuration of the hosted shared desktop (HSD) VMs, support was set to 50 users per VM. For a different VM configuration the number could successfully be varied.

For XenMobile use, the user count was set to 1000 (approximately 50% of the XenDesktop users in a module). As stated previously the goal was not to maximize the number of XenDesktop and XenMobile users but to establish a range that provides an optimal user experience for the amount of hardware used.

The Citrix-developed test tool that was used to simulate mobile users supports both IOS and Android connections and creates micro VPN connections to the XenMobile App Controllers. A mix of 50/50 IOS and Android connections was used. The tool creates three micro VPN connections per test tool user connection, so 1000 users generate 3000 micro VPN connections. We excluded new user connections, which create five or more micro VPN connections during device registration with the XenMobile Device Manager (XDM). The NetScalers were configured to do SSL offloading.

With the servers assigned and configured in conjunction with the EMC enterprise storage used to support our environment, we were able to support 1800 HSD users and 360 HVD users in our first module, which also supported the infrastructure VMs required to run the environment. This aligned with our aim of 80% HSD users and 20% HVD users. The first module consisted of 16 HP BL460c Gen8 blades: three dedicated to supporting XenDesktop infrastructure (Brokers, SQL databases, license servers, and Provisioning Services servers) running as VMs as well as the XenMobile XDM and App Controller VMs, nine servers to support HSD, and four servers to support HVD.

Adding a second module of 16 servers required adding two more Provisioning Services VMs and an additional SCVMM VM. To avoid having to use two servers to support only three infrastructure VMs, the VMs were run on the HSD cluster in the second module. The number of HSD VMs was reduced

by three. For the second module 12 physical servers were in the HSD cluster, supporting 2250 users in 45 HSD VMs and the three infrastructure VMs. Four servers were used to support the HVD, totaling 360 users.

### Appendix A: NetScaler configuration screens

The following screenshots show how the NetScaler was configured.

#### Creating VIP to StoreFront for XenDesktop

NetScaler Gateway Settings

|                                                                               |                    |
|-------------------------------------------------------------------------------|--------------------|
| Name*                                                                         | go.ctxmobi.com     |
| IP Address*                                                                   | 172 . 16 . 140 . 6 |
| Port*                                                                         | 443                |
| <input type="checkbox"/> Redirect requests from port 80 to secure port*       |                    |
| <input type="button" value="Continue"/> <input type="button" value="Cancel"/> |                    |

NetScaler Gateway Settings

|                |              |      |                                               |
|----------------|--------------|------|-----------------------------------------------|
| Name           | IP Address   | Port | Redirect requests from port 80 to secure port |
| go.ctxmobi.com | 172.16.140.6 | 443  | No                                            |

Certificate

|                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="radio"/> Choose Certificate <input type="radio"/> Install Certificate <input type="radio"/> Use Test Certificate |
| Certificate <input type="button" value="go.ctxmobi.com"/>                                                                                |
| <input type="button" value="Continue"/> <input type="button" value="Cancel"/>                                                            |

Enterprise Store Settings

|                                                                                      |
|--------------------------------------------------------------------------------------|
| <input type="radio"/> XenMobile <input checked="" type="radio"/> XenApp / XenDesktop |
| Deployment Type <input type="button" value="StoreFront"/>                            |
| StoreFront FQDN* <input type="text" value="StoreFront.ctxmobi.com"/>                 |
| <input type="checkbox"/> Use HTTPS                                                   |
| Receiver for Web Path* <input type="text" value="/Citrix/StoreWeb"/>                 |
| Single Sign-on Domain* <input type="text" value="ctxmobi"/>                          |
| STA URL* <input type="text" value="http://xd01.ctxmobi.com"/>                        |
| <input type="button" value="Continue"/> <input type="button" value="Cancel"/>        |

NetScaler Gateway Settings

|                |              |      |                                               |
|----------------|--------------|------|-----------------------------------------------|
| Name           | IP Address   | Port | Redirect requests from port 80 to secure port |
| go.ctxmobi.com | 172.16.140.6 | 443  | No                                            |

Certificate

|                                                         |
|---------------------------------------------------------|
| Certificate <input type="text" value="go.ctxmobi.com"/> |
|---------------------------------------------------------|

Authentication Settings

**Primary Authentication - LDAP**  
LDAP-CTXMOBI

Enterprise Store Settings

|                                                           |                                                            |
|-----------------------------------------------------------|------------------------------------------------------------|
| Deployment Type <input type="button" value="StoreFront"/> | Single Sign-on Domain <input type="text" value="ctxmobi"/> |
|-----------------------------------------------------------|------------------------------------------------------------|

## Configuring load balancing

NetScaler > Traffic Management > Load Balancing > Servers

| Name | State   | IP Address / Domain |
|------|---------|---------------------|
| DC02 | Enabled | 172.16.0.10         |
| DC01 | Enabled | 172.16.0.5          |

NetScaler > Traffic Management > Load Balancing > Monitors

Configure Monitor

| Name         | Type      |
|--------------|-----------|
| ping-default | PING      |
| tcp-default  | TCP       |
| arp          | ARP       |
| nd6          | ND6       |
| ping         | PING      |
| tcp          | TCP       |
| http         | HTTP      |
| tcp-ecv      | TCP-ECV   |
| http-ecv     | HTTP-ECV  |
| udp-ecv      | UDP-ECV   |
| dns          | DNS       |
| ftp          | FTP       |
| tcps         | TCP       |
| https        | HTTP      |
| tcps-ecv     | TCP-ECV   |
| https-ecv    | HTTP-ECV  |
| ldns-ping    | LDNS-PING |

**dns** (selected)

Standard Parameters | Special Parameters

Interval: 15 Seconds | Response Time-out: 2 Seconds | Down Time: 30 Seconds | Deviation: 0 | Retries: 3 | SNMP Alert Retries: 0 | Success Retries: 1 | Failure Retries: 0

Destination IP: . . . | Destination Port: | Dynamic Time-out: | Dynamic Interval: | Resp Time-out Threshold: | Action: NONE | Custom Header: | Treat back slash as escape character:

Enabled |  Reverse |  LRTM (Least Response Time using Monitoring) |  Net Profile |  Transparent |  Secure |  IP Tunnel

TOS TOS Id: 0 | Help | OK | Close | Enabled

NetScaler > Traffic Management > Load Balancing > Monitors

Configure Monitor

| Name         | Type      |
|--------------|-----------|
| ping-default | PING      |
| tcp-default  | TCP       |
| arp          | ARP       |
| nd6          | ND6       |
| ping         | PING      |
| tcp          | TCP       |
| http         | HTTP      |
| tcp-ecv      | TCP-ECV   |
| http-ecv     | HTTP-ECV  |
| udp-ecv      | UDP-ECV   |
| dns          | DNS       |
| ftp          | FTP       |
| tcps         | TCP       |
| https        | HTTP      |
| tcps-ecv     | TCP-ECV   |
| https-ecv    | HTTP-ECV  |
| ldns-ping    | LDNS-PING |

**dns** (selected)

Standard Parameters | Special Parameters

Query: ctxmobi.com | Query Type: Address

172.16.0.5 |  IPv6 | Add | IP Address: 172.16.0.5 | Remove

Help | OK | Close | Enabled

**Create Service Group**

Service Group Name: AD\_DNS\_svrg Protocol: DNS

Available Monitors: arp, nd6, ping, tcp, http, tcp-ecv, http-ecv, udp-ecv, ftp, tcps, https, tcps-ecv, https-ecv, ldns-ping, ldns-tcp, ldns-dns, SF\_1\_192.168.154.40, SF\_2\_192.168.154.41

Configured Monitors: dns (Weight: 1, State: Up, Passive: No)

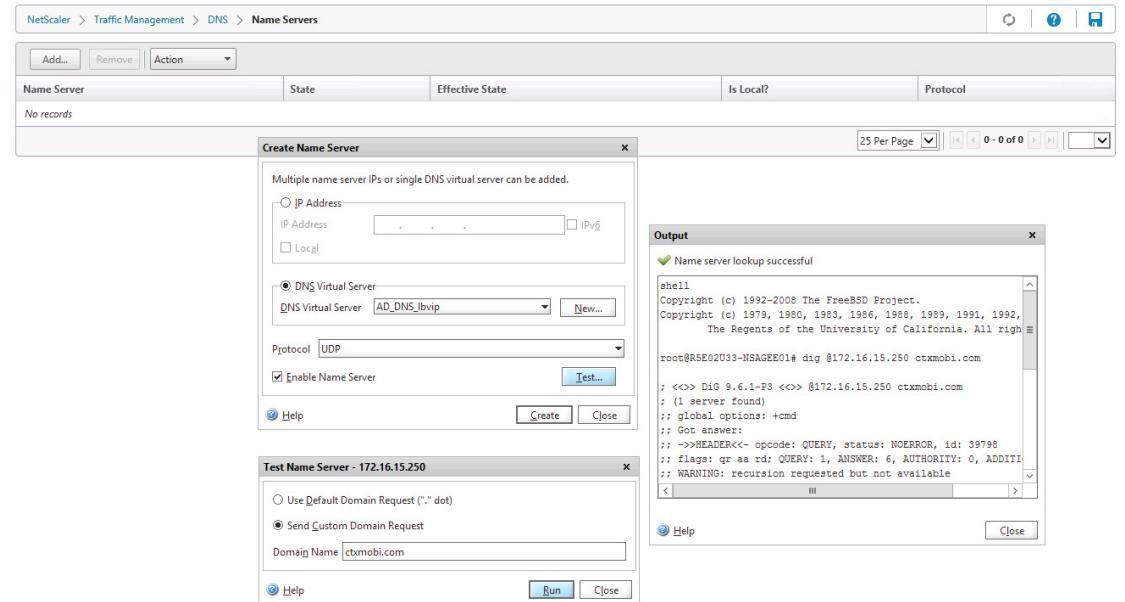
Comments:

**Create Virtual Server (Load Balancing)**

Name: AD\_DNS\_lbvip Protocol: DNS

IP Address: 172.16.15.250 Port: 53

Directly Addressable: Yes State: Up AppFlow Logging: Yes


Traffic Domain ID:

Service Group: AD\_DNS\_svrg

Comments:

**Virtual Servers**

| Name         | State | Effective State | IP Address    | Traffic Domain ID | Port | Protocol | Method          | Persistence | % Health   |
|--------------|-------|-----------------|---------------|-------------------|------|----------|-----------------|-------------|------------|
| AD_DNS_lbvip | Up    | Up              | 172.16.15.250 | 0                 | 53   | DNS      | LEASTCONNECTION | NONE        | 0.00% 0 UF |



**Corporate Headquarters**  
Fort Lauderdale, FL, USA

**Silicon Valley Headquarters**  
Santa Clara, CA, USA

**EMEA Headquarters**  
Schaffhausen, Switzerland

**India Development Center**  
Bangalore, India

**Online Division Headquarters**  
Santa Barbara, CA, USA

**Pacific Headquarters**  
Hong Kong, China

**Latin America Headquarters**  
Coral Gables, FL, USA

**UK Development Center**  
Chalfont, United Kingdom

#### About Citrix

Citrix (NASDAQ:CTXS) is a leader in mobile workspaces, providing virtualization, mobility management, networking and cloud services to enable new ways to work better. Citrix solutions power business mobility through secure, personal workspaces that provide people with instant access to apps, desktops, data and communications on any device, over any network and cloud. This year Citrix is celebrating 25 years of innovation, making IT simpler and people more productive. With annual revenue in 2013 of \$2.9 billion, Citrix solutions are in use at more than 330,000 organizations and by over 100 million users globally. Learn more at [www.citrix.com](http://www.citrix.com).



Copyright © 2014 Citrix Systems, Inc. All rights reserved. Citrix, XenDesktop, Citrix Receiver, HDX Insight, XenMobile, XenApp, FlexCast, Citrix Provisioning Services, NetScaler, NetScaler Insight Center, NetScaler VPX, XenServer, NetScaler MPX and NetScaler Gateway are trademarks of Citrix Systems, Inc. and/or one of its subsidiaries, and may be registered in the U.S. and other countries. Other product and company names mentioned herein may be trademarks of their respective companies.