Citrix Provisioning 1909
Contents

What’s new
3

Fixed issues
10

Known issues
11

Deprecation
11

System requirements and compatibility
12

Licensing
25

Configuring a virtual disk for Microsoft Volume Licensing
29

Architecture
35

Components
38

Product utilities
43

Administrator roles
44

Collections
45

Citrix Provisioning console
46

Install Citrix Provisioning software components
48

Pre-installation tasks
50

Network components
56

Install the Server component
69

Running the configuration wizard silently
71

Install the Console component
73

Preparing a master target device for imaging
74

Using the Imaging Wizard to create a virtual disk
78

Upgrade
80

Servers
89
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual disks</td>
<td>92</td>
</tr>
<tr>
<td>Configure</td>
<td>105</td>
</tr>
<tr>
<td>Console</td>
<td>106</td>
</tr>
<tr>
<td>Farm</td>
<td>114</td>
</tr>
<tr>
<td>Server</td>
<td>127</td>
</tr>
<tr>
<td>Device collections</td>
<td>144</td>
</tr>
<tr>
<td>Target devices</td>
<td>148</td>
</tr>
<tr>
<td>Creating vDisks</td>
<td>159</td>
</tr>
<tr>
<td>Configuring virtual disks for Active Directory management</td>
<td>170</td>
</tr>
<tr>
<td>Assigning virtual disks to target devices</td>
<td>178</td>
</tr>
<tr>
<td>Using the Manage Boot Devices utility</td>
<td>179</td>
</tr>
<tr>
<td>Export Devices Wizard</td>
<td>182</td>
</tr>
<tr>
<td>Using the Streamed VM Setup Wizard</td>
<td>200</td>
</tr>
<tr>
<td>Deploying virtual desktops to VMs using the Citrix Virtual Apps and Desktops Setup Wizard</td>
<td>203</td>
</tr>
<tr>
<td>Provisioning vGPU-enabled Citrix Virtual Apps and Desktop machines</td>
<td>214</td>
</tr>
<tr>
<td>Citrix Provisioning Accelerator</td>
<td>217</td>
</tr>
<tr>
<td>Unified Extensible Firmware Interface (UEFI) pre-boot environments</td>
<td>226</td>
</tr>
<tr>
<td>Citrix Provisioning managed by Citrix Cloud</td>
<td>229</td>
</tr>
<tr>
<td>Manage</td>
<td>246</td>
</tr>
<tr>
<td>Farms</td>
<td>247</td>
</tr>
<tr>
<td>Sites</td>
<td>248</td>
</tr>
<tr>
<td>Servers</td>
<td>250</td>
</tr>
<tr>
<td>Stores</td>
<td>254</td>
</tr>
<tr>
<td>Device collections</td>
<td>258</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Target devices</td>
<td>262</td>
</tr>
<tr>
<td>Virtual disks</td>
<td>279</td>
</tr>
<tr>
<td>Selecting the write cache destination for standard virtual disk images</td>
<td>284</td>
</tr>
<tr>
<td>Support for replicated virtual disk storage</td>
<td>288</td>
</tr>
<tr>
<td>Exporting and importing vDisks</td>
<td>290</td>
</tr>
<tr>
<td>Releasing virtual disk locks</td>
<td>292</td>
</tr>
<tr>
<td>Copying and pasting virtual disk properties</td>
<td>293</td>
</tr>
<tr>
<td>Adding existing vDisks to a virtual disk pool or store</td>
<td>293</td>
</tr>
<tr>
<td>Backing up a virtual disk</td>
<td>294</td>
</tr>
<tr>
<td>Viewing virtual disk usage</td>
<td>294</td>
</tr>
<tr>
<td>Deleting cache on a difference disk</td>
<td>295</td>
</tr>
<tr>
<td>Assigning virtual disks and versions to target devices</td>
<td>296</td>
</tr>
<tr>
<td>Updating virtual disks</td>
<td>302</td>
</tr>
<tr>
<td>Retiring or deleting virtual disks</td>
<td>315</td>
</tr>
<tr>
<td>Printers</td>
<td>316</td>
</tr>
<tr>
<td>Views</td>
<td>321</td>
</tr>
<tr>
<td>Administrative roles</td>
<td>325</td>
</tr>
<tr>
<td>Advanced concepts</td>
<td>329</td>
</tr>
<tr>
<td>Enable SQL Server Always On multi-subnet failover</td>
<td>329</td>
</tr>
<tr>
<td>SQL basic availability groups</td>
<td>331</td>
</tr>
<tr>
<td>Storage migration within the same host</td>
<td>331</td>
</tr>
<tr>
<td>Managing for highly available implementations</td>
<td>332</td>
</tr>
<tr>
<td>Offline database support</td>
<td>333</td>
</tr>
<tr>
<td>Database mirroring</td>
<td>335</td>
</tr>
</tbody>
</table>
Provisioning server failover 337
Configuring for high availability with shared storage 339
Configuring the boot file for high availability 341
Troubleshooting 344
Logging 344
Auditing 346
APIs 349
CIS Problem Reporting 353
What’s new

October 25, 2019

This release of Citrix Provisioning includes the following enhancements:

- Support for multiple zones in the Citrix Virtual Apps and Desktops creation process
- Target device operation and performance statistics
- Continued support for Citrix Hypervisor 8
- Support for Microsoft System Center Virtual Machine Manager (SCVMM) 2019

This release also includes several fixes for issues seen in past releases, and new issues that we’ve identified.

Note:

To receive the latest provisioning features, be sure to use the most recent version of the Citrix License Server. If you are upgrading Citrix Provisioning to the newest version, the latest License Server version is required. When you do not upgrade to the latest version of the License Server, the product license enters the 30-day grace period. For more information, see Licensing.

Support for multiple zones in the catalog creation process

Citrix Provisioning 1909 adds support for multiple zones in Citrix Virtual Apps and Desktops Setup and Export Devices wizards. In previous releases, the wizards created catalogs and placed them in the Primary Zone by default. This behavior occurred for both the Citrix Cloud and On-premises Virtual Apps and Desktop DDC.

To correct the catalog locations and assign them to appropriate secondary zones, manually issue the Citrix Broker PowerShell cmdlet from the Citrix Provisioning console machine:

```
Set-BrokerCatalog-Name <CatalogName> -ZoneUid <GuidOfSecondaryZone>
```

The following image illustrates how a `Set-BrokerCatalog` PowerShell cmdlet was issued with the `-ZoneUid` parameter:
To correct the catalog locations and assign them to appropriate secondary zones, manually issue the Citrix Broker PowerShell cmdlet from the Citrix Provisioning console machine:

The following image illustrates the catalog preferences you can configure as part of both the Citrix Virtual Apps and Desktops wizard and the Citrix Provisioning Devices Export wizard. Instead of asking you to select a zone, both wizards automatically create the catalog in the zone of the hosting unit or hosting connection chosen in the earlier setup screen.
Target device operation and performance statistics

This release of Citrix Provisioning introduces updates to target device operations and performance statistics. Updates include:

- a WMI provider for static information about the target device.
- a performance counter provider for dynamic information about the target device.
- an external application running on the target device or the remote machine. This application queries objects using a WMI API to determine if they are running on a provisioned target and to gather information related to the configuration and state of the device.

As part of the standard Citrix Provisioning target device installation, a WMI provider DLL is installed and registered on each provisioned target device. This DLL obtains target device information from the BNIStack driver.
How it works

The provider creates the PVS_Target and PVS_VDisk WMI objects in the root/Citrix/PVS namespace. Each provisioned target device has a single instance of the PVS_Target object. The PVS_Target object provides information about the installed Citrix Provisioning version, and statistics for the latest boot operation.

If no instance of PVS_Target exists when the WMI provider queries the target device, either the device is not a Citrix Provision target device, or it is running an older Citrix Provisioning version of the target device software.

The PVS_Target object

The following table provides information about the PVS_Target object:

<table>
<thead>
<tr>
<th>Item name</th>
<th>Type</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target_Software_Version</td>
<td>String</td>
<td>-</td>
<td>PVS target version</td>
</tr>
<tr>
<td>Boot_Time_In_Sec</td>
<td>Int</td>
<td>seconds</td>
<td>The number of seconds elapsed during the boot phases of the operating system</td>
</tr>
<tr>
<td>Boot_Retry_Count</td>
<td>Int</td>
<td>-</td>
<td>Retry count during boot</td>
</tr>
<tr>
<td>Boot_Bytes_Read_MB</td>
<td>Int</td>
<td>MB</td>
<td>Number of bytes read during boot</td>
</tr>
<tr>
<td>Boot_Retry_Write_Mi</td>
<td>Int</td>
<td>MB</td>
<td>Number of bytes written during boot</td>
</tr>
</tbody>
</table>

The PVS_VDisk object

One instance of the PVS_VDisk object exists on the provisioned target device. This object contains information about the virtual disk, the write cache mode and cache disk size.

The table below provides information about the PVS_VDisk object:

<table>
<thead>
<tr>
<th>Item name</th>
<th>Type</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDisk_Name</td>
<td>String</td>
<td>-</td>
<td>Virtual disk file name</td>
</tr>
<tr>
<td>Item name</td>
<td>Type</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Write_Cache_Type</td>
<td>String</td>
<td>-</td>
<td>Write cache type being used</td>
</tr>
<tr>
<td>Write_Cache_Volume_Size</td>
<td>Int</td>
<td>MB</td>
<td>Configured write cache volume size</td>
</tr>
<tr>
<td>Boot_From</td>
<td>String</td>
<td>-</td>
<td>Boot from virtual disk or local hard disk</td>
</tr>
<tr>
<td>Write_Cache_Volume_Drive_Letter</td>
<td>String</td>
<td>-</td>
<td>Write cache volume drive letter</td>
</tr>
</tbody>
</table>

Updated performance counters

Citrix Provisioning includes an updated performance counter that is automatically installed and registered on each provisioned target device.

The BNISTack driver provides the following new performance counters:
Consider the following:

- The provisioned target device installer registers the WMI and performance counter providers. No additional installation options require configuration on the provisioned target device.
- The current CVhdMp performance counter provider only supports VHDX for target devices using **Cache in device RAM with overflow on hard drive**.

Performance counters provided by the CVhdMp driver

- use the Citrix Provisioning Imaging Wizard. In the **Microsoft Volume Licensing** screen, click the appropriate license management option for the virtual disk. Click the **Key Management Service (KMS)** radio button, then click the **Accelerated Office Activation** check box. Select **Next** to apply the configuration change to the virtual disk and continue configuring it.

<table>
<thead>
<tr>
<th>Counter name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP retry</td>
<td>perf_counter_counter</td>
<td>PVS UDP retry count</td>
</tr>
<tr>
<td>Server reconnect</td>
<td>perf_counter_counter</td>
<td>PVS server reconnect count</td>
</tr>
<tr>
<td>File bytes</td>
<td>perf_counter_large_rawcount</td>
<td>The VHDX file size</td>
</tr>
<tr>
<td>File reads/sec</td>
<td>perf_counter_counter</td>
<td>The rate of reads from VHDX file in operations per second</td>
</tr>
<tr>
<td>File writes/sec</td>
<td>perf_counter_counter</td>
<td>The rate of writes to VHDX file in operations per second</td>
</tr>
<tr>
<td>File read bytes/sec</td>
<td>perf_counter_bulk_count</td>
<td>The rate of reads from VHDX file in bytes per second</td>
</tr>
<tr>
<td>File write bytes/sec</td>
<td>perf_counter_bulk_count</td>
<td>The rate of writes from VHDX file in bytes per second</td>
</tr>
<tr>
<td>RAM cache types</td>
<td>perf_counter_large_rawcount</td>
<td>The amount of memory used by RAM cache</td>
</tr>
<tr>
<td>RAM reads/sec</td>
<td>perf_counter_counter</td>
<td>The rate of reads from RAM cache in operations per second</td>
</tr>
<tr>
<td>RAM writes/sec</td>
<td>perf_counter_counter</td>
<td>The rate of writes to RAM cache in operations per second</td>
</tr>
</tbody>
</table>
Countername, Type, Description

<table>
<thead>
<tr>
<th>Counter name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM read bytes/sec</td>
<td>perf_counter_bulk_count</td>
<td>The rate of reads from RAM cache in bytes per second</td>
</tr>
<tr>
<td>RAM write bytes/sec</td>
<td>perf_counter_bulk_count</td>
<td>The rate of writes to RAM cache in bytes per second</td>
</tr>
<tr>
<td>Provisionsed server virtual disk reads/sec</td>
<td>perf_counter_counter</td>
<td>The rate of reads from the provisioned server’s virtual disk over the network in operations per second</td>
</tr>
<tr>
<td>Provisionsed server virtual disk bytes/sec</td>
<td>perf_counter_bulk_count</td>
<td>The rate of reads from the provisioned server’s virtual disk over the network in bytes per second</td>
</tr>
</tbody>
</table>

Continued support for Citrix Hypervisor 8

This release provides continued experimental support for Unified Extensible Firmware Interface (UEFI) virtual machine (VM) provisioning on Citrix Hypervisor 8.0. Citrix Hypervisor is the complete server virtualization platform from Citrix. You can use Citrix Hypervisor to create and manage a deployment of virtual x86 computers running on Xen. See the [Citrix Hypervisor](https://docs.citrix.com/en-us/5-1/citrix-hypervisor/) documentation for more information.

Consider the following when using this functionality:

- Windows guest operating system UEFI boot on a provisioned virtual machine is an experimental feature. For more information, see [Experimental features](https://docs.citrix.com/en-us/5-1/security/uefi/).

Known limitations include:

- UEFI VM with NVRAM
- Citrix Provisioning Accelerator with UEFI VM on Citrix Hypervisor 8.0

Support for Microsoft System Center Virtual Machine Manager 2019

This release includes support for Microsoft System Center Virtual Machine Manager (SCVMM) 2019.

How do I?

Use the [How Do I?](https://docs.citrix.com/en-us/5-1/how-do-i/) page in the Citrix Knowledge Center for additional information related to configuration, networking, antivirus, or hypervisor related procedures. These pages are purpose-built to help resolve problems arising from the use of Citrix Provisioning.
Fixed issues

October 25, 2019

Citrix Provisioning 1909 contains all fixes that were included in previously released versions 7 through 1906, plus the following new fixes:

Citrix Provisioning target device issues

- Some target devices repeat the Citrix Provisioning reconnect login process after SQL server failover. [LD1822]
- A provisioned target hangs with 100% CPU on XenServer during the boot process. [LD0559]

The following fixes exist for provisioned Linux target devices:

- Linux target device cannot perform a high availability failover to a different server. [PVS-4342]
- Linux target device with more than one assigned virtual disk fails to boot. [LD1088]
- Creating a new virtual disk from a Linux machine using the PVS-Imager tool fails. The message *The specified collection does not exist* appears. [LD0808]
- Provisioned Linux target devices lose domain trust after password expiration. [LD0637]

Citrix Provisioning server issues

- StreamProcess.exe crashed when the database was switched from OFFLINE to ONLINE. [LD1958]
- The Virtual Apps PVS-7.1808.2_Streaming service randomly stops. [LD0604]
- Merging a virtual disk on Microsoft Server 2016 takes a long time when using a REFS formatted data store. [LD1783]

Other fixed issues

- Configuration wizard fails to complete when SQL modelDB is greater than the default database. [LD1957]
Known issues

September 26, 2019

The following issue is known at this release:

• The Citrix Provisioning server event viewer displays an erroneous boot time for a target device. For example, “Device esx-2 boot time: 26086850 minutes 23 seconds.” [PVS-4478]

• When creating a machine catalog for a physical device using the Export Devices Wizard, the following exception appears: “Object reference not set to an instance of an object.” To resolve this issue, use the Machine Creation Wizard in Studio to import the physical devices to the Citrix Virtual Apps and Desktops machine catalog. When you are using the Citrix Virtual Apps and Desktops service in Citrix Cloud, the machine catalog appears in the Initial Zone. Manually correct the zone of the machine catalog in Studio. This configuration avoids the error “Cannot connect to the PVS server” when adding more devices. [PVS-4559]

To manually move the machine catalog to correct zone:

1. Log into Studio.
2. In the zones node, manually drag the machine catalog to the desired zone.

Deprecation

January 14, 2019

The announcements in this article are intended to give you advanced notice of features which are being phased out so that you can make timely business decisions. Citrix monitors customer use and feedback to determine when they are withdrawn. This list is subject to change in subsequent releases and does not include every deprecated feature or functionality.

The following features are deprecated. This does not mean that they are removed immediately. Citrix will continue to support them up to and including the next Citrix Provisioning version that is part of the next Citrix Virtual Apps and Desktops Long Term Service Release (LTSR). Deprecated items will be removed in a Current Release following the next LTSR. Alternatives for deprecated items are suggested where possible.

For complete details about product lifecycle support, see the Product Lifecycle Support Policy article.

- **Printer management**: Labeled Enable printer management in the vDisk Properties screen. This item was announced in version 7.12.
• **In the BDM Media Properties section of the Boot Device Management screen, the term BDM Secure Boot:** This item was announced in version 7.12.

The alternative is as follows: The Protect SDB parameter replaces BDM Secure boot. This new parameter represents as much functionality previously provided by the BDM Secure Boot option. To use this feature:

1. In the Boot Device Management screen, select the Protect SBD checkbox.
2. Optionally select Generate random password (make Media Write-Once), then enter the password and confirmation.
3. Click Burn to create the bootable device.

• **The vDisk Properties screen is updated to remove the following options from the Cache Type field:**

 - Cache on hard disk. This option is removed from the list of available parameters on the vDisk Properties screen; this option can still be configured using an API.
 - Cache on hard disk persisted. The cache on hard disk parameter is removed due to lack of ASLR support.

 This item was announced in version 7.12. As an alternative, use one of the other available options.

System requirements and compatibility

November 12, 2019

The system requirements in this article were valid when this Citrix Provisioning version was released. Updates are made periodically. Components not covered here (such as StoreFront, host systems, and Citrix Receivers) are described in their respective documentation.

For more information about using this Current Release (CR) in a Long Term Service (LTSR) environment and other FAQ, see the Knowledge Center article.

Important:

Review the pre-installation tasks article before installing Citrix Provisioning.

Unless otherwise noted, the component installer deploys software prerequisites automatically (such as .NET elements) if the required versions are not detected on the machine. The Citrix installation media also contains some of this prerequisite software.

For internationalization information, see Global Status of Citrix Products.
Database

The following databases are supported: Microsoft SQL Server 2008 SP3 through 2016 (x86, x64, and Express editions).

Database clustering is supported.

When configuring databases for provisioning, consider that no preference exists for any specific SQL collation. Collation supports the standard method recommended by Citrix Virtual Apps and Desktops when using the configuration wizard. The administrator creates the database with a collation that ends with _CI_AS_KS. Citrix recommends using a collation that ends with _100_CI_AS_KS.

Note

See Supported Databases for Citrix Virtual Apps and Desktop Components in the Knowledge Center for additional information about supported databases and clients.

License

The Citrix Licensing Server download for this release is included with the Citrix Virtual Apps and Desktop installation media. Use the most recent Citrix License Server to get the latest features.

Important:

Citrix Provisioning servers must be connected to the License Server to operate successfully. Use the most recent version of the Citrix License Server to get the latest features. Citrix recommends that you upgrade the License Server before upgrading Citrix Provisioning to avoid any licensing conflicts related to grace periods. For more information, see Licensing.

Provisioning server

- **Processors:** The following processors are supported: Intel or AMD x64 compatible; 2 GHz minimum; 3 GHz preferred; 3.5 GHz Dual Core/HT or similar for loads greater than 250 target devices.
- **Storage:** A Provisioning Server can have many vDisks stored on it, and each disk can be several GB in size. Improve your streaming performance by using a RAID array, SAN, or NAS. There must be enough space on the hard disk to store the vDisks. For example, if you have a 15 GB hard drive, you can only create a 14 GB virtual disk. More requirements depend on several factors such as:
- **Hard disk capacity** – the requirements of the operating system and applications running on a target device. Citrix recommends adding 20% to the base size of the final installed image.

- **Private Image Mode** – the number of target devices using a virtual disk in private image mode. vDisks in private image mode are backed up daily.

- **Standard Image Mode** – the number of target devices using a virtual disk in standard image mode. Best practice is to include making a copy of every virtual disk created. Minimum estimated common storage sizes: 250 MB for the database, 5 GB on a clean Windows system, 15 GB per virtual disk for Vista Class images.

- **Network adaptor**: Static IP, Minimum 100 MB Ethernet, 1 GB Ethernet preferred; Dual 1 GB Ethernet for more than 250 target devices. Two NICs often perform better than a single dual-ported NIC.

- **Citrix Provisioning dependencies**: The Citrix Provisioning server install program requires Microsoft .NET 4.7.1 and Windows PowerShell 3.0.

 Note:

 A single provisioning server can support up to 4,095 target devices.

Network

The following list describes each network type and the associated port.

UDP and TCP ports

- **Provisioning server to provisioning server communication**: Each provisioning server must be configured to use the same ports (UDP) to communicate with each other using the Messaging Manager. At least five ports must exist in the selected port range. Configure the port range on the Stream Services dialog when running the Configuration Wizard.

 Note:

 If you are configuring for high availability, all provisioning servers selected as failover servers must reside within the same site. High availability is not intended to cross between sites.

 Default port range (UDP): 6890–6909

- **Provisioning servers to target device communication**: Each provisioning server must be configured to use the same ports (UDP) to communicate with target devices using the StreamProcess. The port range is configured using the Console Network tab on the Server Properties dialog.
Note:
The first 3 ports are reserved for Citrix Provisioning.

Default port range (UDP): 6910–6930

- **Target device to Citrix Provisioning communication:** Unlike provisioning servers to target device port numbers, target device to Citrix Provisioning communication cannot be configured.

 Ports (UDP): 6901, 6902, 6905

- **Login server communication:** Each provisioning server used as a login server must be configured on the Stream Servers Boot List dialog when running the Configuration wizard.

 Default port (UDP): 6910

- **Citrix Provisioning console communication:** The SOAP Server is used when accessing the provisioning console. The ports (TCP) are configured on the Stream Services dialog when running the Configuration Wizard. For PowerShell: **MCLI-Run SetupConnection.** For MCLI: **MCLI Run SetupConnection.**

Trivial FTP (TFTP)

- The TFTP port value is stored in the registry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\BNTFTP\Parameters

 Default port (TFTP): 69

TSB

- The TSB port value is stored in the registry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\PVSTSB\Parameters

 Default port (UDP): 6969

 Port Fast: Port Fast must be enabled

 Network card: PXE 0.99j, PXE 2.1 or later

 Addressing: DHCP

Target device

In most implementations, there is a single virtual disk providing a standard image for multiple target devices. To simplify virtual disk and target device maintenance, create and maintain fewer vDisks and assign more target devices to each virtual disk.
Tip:
When using the virtual disk Imaging Wizard for a target device, problems appear related to some Microsoft components which are not installed. For example, operating systems that do not have Microsoft Visual C++ generate an error message similar to:

```
api-ms-win-crt-runtime-11-1-01.dll is missing
```

Citrix recommends that all Windows updates and components are current before installing Citrix Provisioning.

To have a single virtual disk, all target devices must have certain similarities to ensure that the OS has necessary drivers required to run properly. The three key components are the motherboard, network card, or video card.

Install and configure the Microsoft NIC teaming driver or OEM NIC teaming software before you install the target device software.

Tip:
The Unified Extensible Firmware Interface (UEFI) is supported. However, consider that this support extends to physical machines that support UEFI. Secure boot is only supported on Hyper-V 2016 and newer versions. ESX must use version 6.5 or newer for secure boot implementations.

Identify target devices by the operating system running on the device.

Note:
Dual boot virtual disk images are not supported.

The operating systems identified in the following list are supported for target devices:

- **Operating System:** Windows Server 2019 Standard and data center editions, Windows Server 2016 Standard, and data center editions, Windows 10 (32-bit or 64-bit); all editions. Note the following:
 - Support for the publicly available version at the time of the release. Windows 8.1 (32-bit or 64-bit); all editions. Windows 7 SP1 (32-bit or 64-bit); Enterprise, Professional, Ultimate.
 - The Ultimate edition of Windows 7 is supported only in private image mode. Windows Server 2016 Windows Server 2012 R2; Standard, Essential, and data center editions; Windows Server 2008 R2 and Windows Server 2008 R2 SP1; Standard, data center, and Enterprise editions.
 - Ensure that all Windows updates are current before installing Citrix Provisioning components. Sometimes, you have to install numerous updates. Citrix recommends that you reboot after installing all Windows updates.
 - Windows 10 v1803 target devices with virtual disk cache type set to **Cache in device RAM** possibly crash when booting.
Citrix Provisioning supports Windows 10 Fall Creator v1709, however, a target device with this OS cannot boot from a virtual disk in private image mode.

- Windows 10 v1809 (x86 and x64) creates a page file error.

Note:

For Windows 10 1803, this issue does not exist between versions 17134.0–17134.523. However, the issue appears when using Windows 10 1803 version 17134.556. See the [Microsoft site](#) for more information. For Windows 10 1809, this issue appears between versions 17763.0–17763.253. The issue is resolved in Windows 10 1809 version 17763.292. See the [Microsoft site](#) for more information.

Note:

Citrix Provisioning does not support Windows 10 IoT Core and Windows 10 IoT Enterprise. See the [Microsoft site](#) for more information.

- **Gen 2 VMs:** For Gen 2 VMs in a Citrix Virtual Apps and Desktops environment, the following operating systems are supported:
 - Windows 2016
 - Windows 10 (with or without secure boot)
 - Windows Server 2016, Windows Server 2012 R2; Standard, Essential, and data center editions

- **Linux streaming:**
 - For Linux streaming, the following operating systems are supported: Ubuntu desktop versions 16.04, 16.04.1 and 16.04.2 (with the 4.4.x kernel); Red Hat Enterprise Linux Server 7.2 and 7.3; CentOS 7.2 and 7.3; SUSE Linux Enterprise Server (SLES) 12.1 and 12.2.
 - When using these distributions for Linux streaming, consider that the provisioning installer requires that the Linux kernel package version is greater than or equal to version 4.4.0.53. The installer automatically provides the correct version during the installation process.
 - The default kernel used for Ubuntu 16.04.2 is version 4.8. This kernel version is not currently supported.
 - If you are using Linux streaming functionality, no new installation packages are provided at this release. Use the Provisioning Services 7.15 Linux DEB/RPM package. For example, after downloading the Citrix Provisioning 1808 ISO, the target software for CentOS/Red Hat is pvs_RED_HAT_7.15_18089_x86_64.rpm.

- **More dependencies:** .NET 4.7.1 (default)

- **Microsoft licensing:** Consider the following when using Microsoft licensing keys with target devices:
 - Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Server 2016, Windows Server 2012 R2, and Windows Server 2008R2 are deployed using either the Key Management Server (KMS) or with Microsoft Multiple Activation Key (MAK) volume licensing keys.
 - Windows Office 2010, Office 2013, and Office 2016 are deployed using KMS licensing. Vol-
ume licensing is configured within the virtual disk image when the Imaging Wizard is run on the Master target device. Volume licensing is configured for the virtual disk file on the Microsoft Volume Licensing tab, which is available from the Console vDisk File Properties dialog.

- In order for MAK licensing to work, the Volume Activation Management Tool (VAMT) for that client OS must be installed on all login servers within a farm. In addition, both Private and Standard Image Modes support MAK and KMS.

- **File system type:** NTFS. For Linux streaming, the following file system types are supported: EXT4, BTRFS, XFS.

Citrix Provisioning console

- **Processor:** Minimum 1 GHz, 2 GHz preferred
- **Memory:** Minimum 1 GB, 2 GB preferred
- **Hard disk:** Minimum 500 MB

Operating systems:

- Windows Server 2019 Standard and data center editions
- Windows Server 2016 Standard and data center editions
- Windows Server 2012 R2; Standard, Essential, and data center editions
- Windows Server 2008 R2 and Windows Server 2008 R2 SP1 Standard, data center, and Enterprise editions
- Windows 10 (32-bit or 64-bit)
- Windows 8.1 (32-bit or 64-bit); all editions
- Windows 8 (32-bit or 64-bit); all editions
- Windows 7 (32-bit or 64-bit)
- **More dependencies:** MMC 3.0, Microsoft .NET 4.7.1, Windows PowerShell 3.0

Store

Ensure that the store can communicate with the Citrix Provisioning database.
Citrix Virtual Apps and Desktops Setup wizard

The Citrix Virtual Apps and Desktops Setup wizard can only operate with the equivalent version of the Citrix Virtual Apps and Desktops controller. The version levels must be the same. In addition:

- One or more configured Citrix Virtual Apps and Desktops hosts with identical templates must exist.
- Create a device collection in the Citrix Provisioning site.
- The virtual disk assigned to each VM must be in standard image mode.

More requirements include:

Permissions:

Consider the following:

- A Citrix Virtual Apps and Desktops controller must exist with permissions for the current user.
- vCenter, SCVMM, and XenServer minimum permissions must be configured.
- A user accessing the Citrix Provisioning console must be configured as a Citrix Virtual Apps and Desktops administrator. The administrator must also exist in the provisioning SiteAdmin group.
- If you are using Citrix Provisioning with Citrix Virtual Apps and Desktops, the SOAP Server user account must have Citrix Virtual Apps and Desktops full administrator privileges.
- When creating accounts in the Console, the user needs the Active Directory Create Accounts permission. To use existing accounts, Active Directory accounts have to exist in a known OU for selection.
- When creating a machine catalog in Citrix Virtual Apps and Desktops, the boot device file is created automatically. Creating it automatically eliminates the need to boot using PXE. An unformatted write cache disk is automatically attached and formatted on first boot.
- When updating the Virtual Delivery Agent (VDA) on the virtual disk image, set the appropriate functional level for the Citrix Virtual Apps and Desktops catalog using the Citrix Virtual Apps and Desktops console. See the Citrix Virtual Apps and Desktops upgrade topics for more information.
- If you are importing an Active Directory .csv file, use the following format: `<name>,<type>,<description>.
- The CSV file must contain the column header. For example, the csv file contents are: Name, Type, Description, PVSPC01, Computer,

SCVMM:

- SCVMM servers require that PowerShell 2.0 is installed and configured for the number of
planned connections.

- The number of required connections for an SCVMM server is greater than or equal to the number of hosted hypervisors used by the setup wizard for virtual machine cloning. For example: to set connections to 25 from a PowerShell prompt, run:

```powershell
winrm set winrm/config/winrs @{
  MaxShellsPerUser="25"
} winrm set winrm/config/winrs @{
  MaxConcurrentUsers="25"
}
```

- For Microsoft SCVMM to support Citrix Virtual Apps and Desktops, run the following PowerShell command: `set-ExecutionPolicy unrestricted` on SCVMM. For Microsoft SCVMM, verify that the MAC address for the template is not 00-00-00-00-00-00 before attempting to clone the template.

- If necessary, use the Template Properties dialog to assign a MAC address.

More requirements:

- If you are running a vCenter server on alternate ports, the following registry modifications must be made to connect to it using Citrix Provisioning:
 - **Create a new key** HKLM\Software\Citrix\ProvisioningServices\PlatformEsx
 - **Create a string in the Platform ESX key** named `ServerConnectionString` and set it to `<http://{ 0 } :PORT/##/sdk>`
 - If you are using port 300, set `ServerConnectionString=<http://{ 0 } :300/sdk>`.
 - If you are using multiple NICs, the Citrix Virtual Apps and Desktops Setup Wizard assumes that the first NIC is the Citrix Provisioning NIC. The Setup Wizard changes it in accordance with the virtual machine network in the domain controller. This item is the first NIC listed in the virtual machines properties.
 - To use the Synthetic switch-over feature, both the first legacy NIC and the synthetic NIC must be on the same network.
 - If the Citrix Virtual Apps and Desktops setup wizard is used with SCVMM, both the first legacy and the synthetic NICs’ network change according to the network resource. These NICs are set by Citrix Virtual Apps and Desktops, or by the user if the SCVMM host has multiple network resources.
 - Multi-NIC support exists for Citrix Virtual Apps and Desktops.
 - Legacy Citrix Virtual Apps and Desktop agents are supported on VMs. For details, see VDA requirements in the Citrix Virtual Apps and Desktops documentation.

Streamed VM wizard setup

Streamed VM Wizard requirements include:

- One or more hypervisor hosts must exist with a configured template.
- A device collection must exist in the Citrix Provisioning site.
- A virtual disk in standard image mode must exist, and must be associated with the selected VM template.
More requirements include:

Template VM:

- **Boot order:** Network/PXE must be listed first (as with physical machines).
- **Hard disks:** If you are using local write cache, an NTFS formatted disk large enough for the cache must exist. Otherwise, no hard disks are required.
- **Network:** Static MAC addresses. If you are using XenServer, the address cannot be 00-00-00-00-00-00. Before attempting to create a template from a VM, ensure that the VM is fully operational.

Permissions:

- The Citrix Provisioning console user account is added to a provisioning SiteAdmin group or above.
- If you are using Active Directory, when creating accounts in the console, they must possess the Active Directory Create Accounts permission. To use existing accounts, they must exist in a known OU for the selection.

ESD server requirements for virtual disk update management

ESD server requirements include:

- **WSUS server:** 3.0 SP2
- **SCCM:** SCCM 2016, SCCM 2012 R2, SCCM 2012 SP1, SCCM 2012

Hypervisor

The following sections include configuration information about supported hypervisors.

> **Important:**
> Refer to Supported Hypervisors for Virtual Desktops (XenDesktop) and Provisioning Services for a complete list of supported hypervisors.

Citrix Hypervisor 5.6 and newer

The template MAC address cannot be 00-00-00-00-00-00.

Support for Citrix Hypervisor 8.0

Experimental support for UEFI virtual machine provisioning on Citrix Hypervisor 8.0 is supported. Citrix Hypervisor is the complete server virtualization platform from Citrix, you can use to create and manage a deployment of virtual x86 computers running on Xen. See the Citrix Hypervisor documentation for more information.
Consider the following when using this functionality:

- Windows guest operating system UEFI boot on a provisioned virtual machine is an experimental feature. For more information, see Experimental features.
- Known limitations include:
 - UEFI VM with NVRAM.
 - Citrix Provisioning Accelerator with UEFI VM on Citrix Hypervisor 8.0.

Nutanix Acropolis

Nutanix Acropolis hypervisors are supported using the Citrix Virtual Apps and Desktops Setup Wizard. The following are not supported:

- Linux VMs
- Boot Device Manager (BDM) partition
- UEFI

For configuration information, see Deploying virtual desktops to VMs using the Citrix Virtual Apps and Desktops Configuration Wizard.

Important:

An Acropolis hypervisor (AHV) plug-in from Nutanix that supports Citrix Provisioning is required. Download this plug-in from the Nutanix support site. See the Nutanix documentation site for installation information.

System Center Virtual Machine Manager (SCVMM) VMM 2012 and newer

Consider the following when configuring this type of hypervisor:

- This release includes support for Microsoft System Center Virtual Machine Manager (SCVMM) 2019.
- VMM 2012, 2012 SP1, and 2012 R2 are different from each other.
- When creating a machine template for VMM 2012 only, ensure that it has a similar hard disk drive structure and that it can boot from a virtual disk in Private Image mode. Examples:
 - To PXE boot a VM with write cache, create a VM with one hard disk drive.
 - To use Boot Device Manager (BDM) to boot a VM with write cache, create a VM with two hard disk drives.
 - To use BDM to boot a VM that uses a Personal vDisk and write cache, create a VM with three hard disk drives.
- For **Synthetic NIC Switch Over**, boot using legacy NIC and then stream using synthetic NIC, both the legacy and the synthetic NICs must be in the same VLAN in the template VMs. The
Citrix Virtual Apps and Desktops Set Up Wizard changes the VLAN of both NICs to the VLAN selected when running the Wizard. This process uses two IP addresses.

- When running the imaging wizard, make sure you select the legacy NIC’s MAC address.
- Citrix Provisioning does not support multiple legacy NICs in the VMM’s VM. VMM uses the last legacy NIC. The Citrix Virtual Apps and Desktops Set Up Wizard always uses the first NIC, regardless of whether it is legacy or synthetic.
- When creating a VMM template, make sure you select None – customization not required as the Guest OS profile in Configure Operating System menu.
- When using the Citrix Virtual Apps and Desktops Set Up Wizard, the targets are created but are not bootable. An error appears **Device not found in the Citrix Provisioning database**. The reason is that the template has the legacy and synthetic NICs in reverse order: synthetic is NIC 1 and legacy is NIC 2. To resolve this issue, delete the NICs in the template. Make a legacy NIC 1 and synthetic NIC 2.

VMware vSphere ESX 4.1 and newer

- **Supported Citrix Provisioning PXE NIC**: ESX 4.x – E1000, ESX 5.0 and newer – VMXNET3
- **Template VM and the master VM**: Both must have the same guest operating system, configuration, and virtual machine version. Mismatches cause the process to stop unexpectedly.
- **Citrix Provisioning and ESX VM version**:
 - vCenter 5.5 defaults to virtual machine version 8, which is for ESX 5.0.
 - The virtual machine version must be changed before OS installation.
 - The template and the master VM must have the same virtual machine version.

- **Windows 7 and Windows 2008 R2 with VMXNET NICs**:
 - Windows 7 and Windows 2008 R2 without service packs: Install the Microsoft iSCSI hotfix http://support.microsoft.com/kb/2344941 and restart the VM before installing Citrix Provisioning target device software.
 - Windows 7 and Windows 2008 R2 with Service Pack 1: Install Microsoft iSCSI hotfix http://support.microsoft.com/kb/2550978 and restart the VM before installing Citrix Provisioning target device software.
- **ESX**:
 - For ESX 5.0 only, the Interrupt Safe Mode must be enabled on the Citrix Provisioning boot-strap. Otherwise, the VM displays a partial MAC address during reboot
 - With ESX 5.5, a VM created using the Web client defaults to virtual hardware version 10, ESX 5.5. A VM created using the vSphere client defaults to version 8, ESX 5.0.
 - When creating a ESXi 5.5 template using the vSphere web client, you can only create hardware version 10 templates. Be sure to modify the template CD/DVD drive virtual mode from SATA to IDE. Remove the SATA controller if you are planning to use the VMXNet3 driver. Removing the controller ensures that the template is compatible with the Citrix Virtual Apps and Desktops Setup Wizard. The wizard requires target drives that are attached using the
SCSI driver.
- When using multiple NICs in ESX VM, the order of the NICs in the VM’s properties, BIOS, and OS differ. Consider this configuration when making your choices for the streaming NIC. This is the first NIC in the VM’s properties. You can choose the PXE NIC in the BIOS.

- **Host record:** Regardless of the ESX version, the host’s address for the Citrix Virtual Apps and Desktops host is the vCenter system. Do not enter the address used by the web client.

Linux streaming

If you are using Linux streaming functionality, no new installation packages are provided at this release. Use the Provisioning Services 7.15 Linux DEB/RPM package. For example, after downloading the Provisioning Services 7.16 ISO, the target software for CentOS/Red Hat is pvs_RED_HAT_7.15_18089_x86_64.rpm.

Important:

If you are using Linux streaming functionality, no new installation packages are provided at this release. Use the Provisioning Services 7.15 Linux DEB/RPM package. For example, after downloading the Provisioning Services 7.16 ISO, the target software for CentOS/Red Hat is pvs_RED_HAT_7.15_18089_x86_64.rpm.

Only Winbind provided by Samba 4.4 and earlier releases is supported when provisioning Linux target devices using Citrix Provisioning.

Distributions:

- Ubuntu 16.04, 16.04.01 and 16.04.02 with the 4.4.x kernel.
 - The Citrix Provisioning installer requires that the Linux kernel package version is greater than or equal to version 4.4.0.53. The installer automatically provides the correct version during the installation process.
 - The following distributions are supported: Red Hat Enterprise Linux Server 7.2, 7.3; CentOS 7.2, 7.3; SUSE Linux Enterprise Server (SLES) 12.1, 12.2.

- **Hypervisors:** XenServer, ESX

- **Image management:** Versioning.

Note:

Reverse imaging is not necessary with Linux.

- **Caching:** All cache modes supported.
 - See the Managing vDisks article for more information on supported cache types.
 - Once the write cache disk is formatted, the Linux client fails to shut down. Instead, it automatically begins using the cache disk.
Citrix Provisioning 1909

- Cache on device hard disk and Cache in device RAM with overflow on hard disk both use the Linux file system caching mode.

Important:
Linux streaming functionality functions with the latest version of Citrix Provisioning along with corresponding versions of Citrix Virtual Apps and Desktops.

See Configure Linux Streaming.

Licensing

May 22, 2019

The Citrix License Server must be installed on a server within the farm that is able to communicate with all Citrix Provisioning servers within the farm. You need one license server per Citrix Provisioning farm.

Important:
Provisioning servers must be connected to the license server to operate successfully. Use the most recent version of the Citrix License Server to get the latest features. Citrix recommends that you upgrade the License Server before upgrading Citrix Provisioning to avoid any licensing conflicts related to grace periods.

Consider the following options when deciding which server to use as the license server:

- Single system: install the license server on the same system as Citrix Provisioning. This option is suitable for evaluations, test labs, or implementations with one Citrix product.
- Stand-alone: install the license server on a separate system. This option is suitable for larger implementations or implementations using multiple Citrix products.
- Point to an existing license server.

For detailed Citrix licensing information, see Licensing.

For information related to virtual disk volume licensing, see Configuring a virtual disk for Microsoft Volume Licensing.

Licensing grace periods

There are two types of grace period:

- **Out-of-box grace period** is 30 days (720 hours). Initial installation of the licensing server provides startup licenses for all Citrix products. Startup licenses expire after 30 days. The 30-day
countdown begins when the product prompts you for the startup license for the first time. Citrix Provisioning product licenses must be installed during this period. A startup license for a Citrix product is voided if a license for that product is installed.

- **License server connectivity outage grace period** is 30 days (720 hours). If connectivity to the Citrix License Server is lost, Citrix Provisioning continues to provision systems for 30 days.

When Citrix Provisioning is in a grace period, administrators are notified through warning messages in the Provisioning Console.

When a grace period expires, all target devices are shut down.

Important:

When you upgrade an existing environment to the newest version of Citrix Provisioning, also upgrade to the latest version of the licensing server or the product license. Failure to perform this upgrade results in Citrix Provisioning entering a 30-day license grace period. No new product features are unavailable.

Installing the license server

Note:

Restart the stream service if Citrix Provisioning is installed after the license server, or if new licenses are added.

License type for Citrix Cloud

The license type `PVS__CCLD__CCS` supports Citrix Virtual Apps and Desktops Service in Citrix Cloud. This license type is applicable to both desktop and server operating systems servicing provisioned target devices, replacing existing on-premises Citrix Provisioning licenses for desktops and data centers.

Note:

This Citrix Cloud license type replaces the existing on-premises Citrix Provisioning license for desktops and provisioning for data centers. It possesses the same license acquiring precedence as the on-premises licenses when bundling Citrix licenses.

The on-premises trade-up feature does not apply to Citrix Cloud licenses. Each Citrix Provisioning target device checks out a single Citrix Cloud license regardless of the operating system type, for example, a data center or desktop.
The various license types, on-premises, or Citrix Cloud is determined by Citrix Provisioning license options for Citrix Cloud. When you use a license server with Citrix Provisioning, Citrix Cloud licenses are consumed if the **Cloud** option is selected during the initial setup. An on-premises license is consumed if **On-premises** is selected when setting up Citrix Provisioning.

Important:

Restart the Citrix Provisioning stream service whenever changes are made to licensing options. For example, when changing from a Citrix Cloud license to an on-premises licensing schema.

Use the Citrix Provisioning Configuration Wizard to specify a Cloud license. In the **License Server** screen, click the **Cloud** radio button, then click **Next** to continue with the configuration process:

![Provisioning Services Configuration Wizard](image)

You can alternately view or change the license type in the **Farm Properties** screen. In the **Licensing** tab, select the appropriate license type; click **Cloud** then click **OK**:
The on-premises trade-up feature does not apply to Citrix Cloud licenses. Each Citrix Provisioning target device checks out a single Citrix Cloud license regardless of the operating system type, for example, a data center or desktop.

Using accelerated Microsoft office activation

An administrator can force the immediate activation of a Microsoft Office license once a system starts up. In previous releases, a provisioned virtual disk activates a license when the virtual machine boots. This lengthy background process occurred after the VM reaches the Citrix Virtual Apps and Desktops login screen. As a result, users encounter licensing conflicts that would lead them to believe a license did not exist for the VM.

To access this new feature:

- use **Microsoft Volume Licensing** tab in the virtual disk Properties screen. Click the **Key Management Service (KMS)** radio button, then click the **Accelerated Office Activation** check box. Select **OK** to apply the configuration change to the virtual disk.

- use the Citrix Provisioning Imaging Wizard. In the **Microsoft Volume Licensing** screen, click the appropriate license management option for the virtual disk. Click the **Key Management Service (KMS)** radio button, then click the **Accelerated Office Activation** check box. Select
Next to apply the configuration change to the virtual disk and continue configuring the virtual disk.

Configuring a virtual disk for Microsoft Volume Licensing

May 22, 2019

Configure a virtual disk for Microsoft Key Management Service (KMS) or Multiple Activation Key (MAK) volume licensing when running the Imaging Wizard. If the virtual disk was not configured using the Imaging Wizard, it can still be configured from the Citrix Provisioning console.

Important:

Citrix Provisioning does not support MAK activation for Microsoft Office products.

Using MCLI and SOAP server command line interfaces for Microsoft volume licensing

MCLI and SOAP Server command-line interfaces can be used to configure Microsoft Volume Licensing using the following procedure:

1. Select the virtual disk in the Citrix Provisioning console, then right-click and select File Properties. The vDisk File Properties dialog appears.
2. Click the Microsoft Volume Licensing tab, then select the MAK or KMS licensing method.
3. Click OK.

Configuring Microsoft KMS volume licensing

This section describes how to use KMS license access codes with Citrix Provisioning.

Note:

Support for KMS licensing requires the SOAP Server user account is a domain user with the right to perform volume maintenance tasks. The domain user is typically found in Local Computer Configuration\Windows Settings\Security Settings\Local Policies\User Rights Assignment. By default, a member of the local administrators group has this right.

KMS volume licensing utilizes a centralized activation server. This server runs in the data center, and serves as a local activation point (opposed to having each system activate with Microsoft over the internet).
Preparing or updating a KMS configured virtual disk that is copied or cloned includes completing the final configuration task. Change the virtual disk mode from **Private Image Mode** to **Shared Image Mode**. Prepare the virtual disk before copying or cloning the virtual disk to other Provisioning Servers. Copy the `pvp` and `vhdx` file to retain the properties and KMS configuration of the original virtual disk.

The tasks involved in configuring a virtual disk image to use KMS volume licensing and managing that virtual disk in a Citrix Provisioning farm includes:

- Enabling KMS licensing on the created virtual disk. Select the **KMS** menu option on the Microsoft Volume Licensing tab when running the Imaging Wizard. See the Imaging Wizard for details.
- Preparing the new base virtual disk image
- Maintaining or upgrading the virtual disk image

Note: If KMS licensing was not configured on the virtual disk when running the Imaging Wizard, alternatively configure it using the Console. You can also configure it using the MCLI and PowerShell command-line interface.

Preparing the new base virtual disk image for KMS volume licensing

After you create a virtual disk using the Imaging Wizard, it must be reset to a non-activated state using the `rearm` command.

Perform this operation on a system booted from the virtual disk in **Private Image Mode**. This process ensures that the master target device hard disk’s rearm count is not reduced.

Tip: Microsoft limits the number of times you can run rearm on an installed OS image. Reinstall the operating system if you exceed the number of allowed rearm attempts.

1. Boot the target device from the virtual disk in private image mode to rearm.

 Note:

 OSPPREARM.EXE must be run from an elevated command prompt.

2. A message prompts you to reboot the system, DO NOT REBOOT. Instead shut down the target device.

3. If the KMS option was not selected when the virtual disk image was created, click the **Microsoft Volume Licensing** tab and set the licensing option to **KMS**.

4. Set the virtual disk mode to standard image mode.

5. Stream the virtual disk to one or more target devices.
Maintaining or upgrading a virtual disk image that uses KMS volume licensing

To maintain or upgrade a virtual disk image that is configured to use KMS volume licensing:

1. Set the virtual disk mode to **Private Image mode**.
2. Stream the virtual disk to a target device.
3. Apply the OS/application service pack/update, then shut down the target device.
4. Set the virtual disk mode back to **Shared Image mode**.
5. Stream the virtual disk to the target device in shared image mode.

Note: If Office 2010 is installed as a virtual disk update, or after the virtual disk has gone through the base disk preparation process once, repeat the base disk preparation using the following procedure:

 a) In the Citrix Provisioning console, right-click on the virtual disk, then select the **File Properties** menu option. The **vDisk File Properties** dialog appears.

 b) Click the **Microsoft Volume Licensing** tab, then change the licensing option from **KMS** to **None**.

 c) On the **Mode** tab, set the virtual disk access mode to **Private Image mode**.

 d) PXE boot to the virtual disk in private image mode to rearm.

 Note: **OSPPREARM.EXE** must be run from an elevated command prompt.

 e) A message prompts you to reboot the system, DO NOT REBOOT. Instead shut down the target device.

 f) In the console, right-click the virtual disk you are configuring, then select the **File Properties** menu option. The **vDisk Properties** dialog appears.

 g) Click the **Microsoft Volume Licensing** tab, then change the license option from **None** to **KMS**.

 h) On the **Mode** tab, set the virtual disk access mode to **Shared Image mode**.

 i) Stream the virtual disk to the target devices.

Configuring Microsoft MAK volume licensing

This section describes the use of Multiple Activation Keys (MAK). A MAK corresponds to some purchased OS licenses. The MAK is entered during the installation of the OS on each system. The installation activates the OS and decrements the count of purchased licenses centrally with Microsoft. Alternatively, a process of **proxy activation** is done using the Volume Activation Management Toolkit (VAMT). Proxy activation works on systems that do not have access to the Internet. Citrix Provisioning applies this proxy activation mechanism for standard image mode virtual disks that have the MAK licensing mode selected when creating the disk.

The Volume Activation Management Tool (VAMT) version 3.1 must be installed and configured on all provisioning servers within a farm. This tool is available from the Microsoft Windows Assessment and Deployment Kit (Windows ADK) available at: http://www.microsoft.com/en-.
When you first execute the VAMT, a VAMT database is created. This database caches all device activations and allows for the reactivation of Citrix Provisioning.

Volume Activation Management Tool 3.1 requires:

- PowerShell 3.0 – the OS is earlier than Windows Server 2012 or Windows 8
- SQL 2012 express or newer

Citrix Provisioning MAK activation requires you to configure one of three user types:

- **Volume Activation Management Tool/Provisioning Services installation user** — This user is a local administrator possessing rights on SQL 2012 or newer (VAMT 3.1 requirement). These rights are used to create a database for VAMT.
- **MAK user** — The user defined in the site’s properties. This user handles the MAK activation on both server and client side. This user is a local administrator on both the provisioning server and the master client. This user requires full access to the VAMT database.
- **Citrix Provisioning SOAP/stream services user** — the stream process handles the reactivation when the target device restarts. This user requires read access to the VAMT database.

Provisioning servers use PowerShell to interface with the VAMT. These manual configuration steps are required one time per server:

1. Install PowerShell 3.0.
2. Install VAMT 3.1 on every provisioning server system using a Volume Activation Management Tool/Provisioning Services installation user.
3. Configure a VAMT database as prompted during the initial run of VAMT 3.1. Make this database accessible to all provisioned servers used to stream VAMT activated Citrix Provisioning target devices.
4. If the user who created the VAMT database is not the SOAP/stream service user, copy the VAMT configuration file `C:\Users\<VAMT installation user (dB creator)>\AppData\Roaming\Microsoft\VAMT\VAMT.config` to `C:\Users\<Provisioning Services soap/stream services user>\AppData\Roaming\Microsoft\VAMT\VAMT.config`.
5. Set the provisioning server security configuration to use PowerShell to interface with VAMT.
 b) WinRM quickconfig.
 c) Enable-WSManCredSSP -Role Client -DelegateComputer <this server fqdn> -Force
 d) Enable-WSManCredSSP -Role Server -Force.
Common activation errors

Error: Failed to create PSSession — Reason: MAK user is not a local administrator on the Citrix Provisioning server.

Error: Index was out of range. Must be non-negative and less than the size of the collection. Parameters name: Index.

Reason: MAK user does not have full access (read\write) permission to the VAMT database.

Setting the virtual disk licensing mode for MAK

A virtual disk can be configured to use Microsoft Multiple Activation Key (MAK) licensing when running the Imaging Wizard. If MAK licensing was not configured when running the Imaging Wizard, the virtual disk’s licensing mode property can be set using the console, MCLI, or PowerShell user interface. The licensing mode is set before activating target devices.

Note: For information on using the command-line interfaces, see the MCLI or PowerShell Programmers Guide.

Entering MAK user credentials

Before target devices that use MAK-enabled vDisks can be activated, MAK user credentials must be entered for a site.

Note: The user must have administrator rights on all target devices that use MAK-enabled vDisks, and on all Provisioning Servers that stream the vDisks to target devices.

To enter credentials:

1. Right-click on the site where the target devices exist, then select the Properties menu option.
2. On the MAK tab, enter the user and password information in the appropriate text boxes, then click OK.

Activating target devices that use MAK-enabled vDisks

After a virtual disk is configured for MAK volume licensing, each target device assigned to the virtual disk must be activated with a MAK.

Note: After all licenses for a given MAK are used, a new key is required to allow more target devices to share this virtual disk image.

To activate target devices that use MAK volume licensing from the Console:

1. Boot all target devices that are to be activated.
2. In the Console, right-click on the collection or view of the individual device including those target devices requiring MAK license activation. Select the Manage MAK Activations... menu option. The Manage MAK Activations dialog appears.

3. In the Multiple activation key text box, enter the MAK to activate the target devices.

4. The number of booted target devices requiring activation display on the dialog. From the list of booted devices, check the box next to each target device that you want to activate.

5. Click OK to activate licensing for all selected target devices. Do not close the dialog until the activation process is completed. The process can be stopped by clicking the Cancel button. Closing the dialog before the activation process completes stops the process might result in some target devices not being activated. The Status column indicates if a target device is being activated or failed. If all target devices were activated successfully, click OK to close the dialog. If one or more target devices are not activated, or if devices were not activated successfully, the dialog displays any unactivated devices. After resolving any issues, repeat this step to activate the remaining target devices.

Note:
The Manage MAK Activations option does not display after all currently booted target devices have been successfully activated.

Maintaining MAK activations

Typically, devices and their assigned virtual disk activations are preserved automatically. When a different target device is assigned a MAK activated virtual disk, it removes any saved existing MAK reactivation information. If the virtual disk is reassigned in the future, the target device fails to reactivate. To prevent the loss of MAK activation, do not unassign the activated disk from the target device.

To change a target device’s virtual disk, without losing the MAK activation, select one of the following methods:

• Assign more vDisks to the target device, without removing any, then set the default booting virtual disk accordingly.
• Assign more vDisks to the target device and temporarily disable the MAK activated virtual disk.

For you to update a MAK activated virtual disk, the Auto Update feature must be used so that the MAK activation information is maintained. This process is required for the shared device reactivation.

More MAK considerations:

• Manual virtual disk updates (unassigning one virtual disk and reassigning another virtual disk) results in the loss of the required MAK activation information. This process requires a new activation, which would consume another license.
• Using auto update to deploy a new virtual disk from a different OS results in mismatched MAK activation information. In this case, a new activation must be performed from the command line interface, as only unactivated target devices can be activated from the Citrix Provisioning console.

Architecture

May 24, 2019

Most enterprises struggle to keep up with the proliferation and management of computers in their environment. Each computer, whether it is a desktop PC, a server in a data center, or a kiosk-type device, must be managed as an individual entity. The benefits of distributed processing come at the cost of distributed management. It costs time and money to set up, update, support and ultimately decommission each computer. The initial cost of the machine is surpassed by operating costs.

Citrix Provisioning takes a different approach from other imaging solutions by changing the relationship between hardware and the software that runs on it. By streaming a single shared disk image, a virtual disk, rather than copying images to individual machines, Citrix Provisioning:

• enables organizations to reduce the number of disk images that they manage, even as the number of machines continues to grow.
• simultaneously provide the efficiencies of a centralized management solution with the benefits of distributed processing.

In addition, because machines are streaming disk data dynamically from a single shared image, machine image consistency is ensured. At the same time, large pools of machines can completely change their configuration, applications, and even operating systems in the time it takes them to reboot.

How Citrix Provisioning works

Using Citrix Provisioning, any virtual disk can be configured in standard image mode. Standard image mode allows many computers to boot from it simultaneously, greatly reducing the number of images that must be maintained and the amount of required storage. The virtual disk is in a read-only format. Target devices cannot change the image.

The following image provides a high-level view of a basic Citrix Provisioning infrastructure and shows how provisioning components might appear within that implementation.
Citrix Provisioning 1909

Benefits of XenApp and other server farm administrators

If you manage a pool of servers that work as a farm, such as Citrix Virtual Apps and Desktops servers or web servers, maintenance is problematic. Maintaining a uniform patch level on your servers can be difficult and time consuming. With traditional imaging solutions you start out with a pristine golden master image. But when a server is built with the master image, you now must patch the individual server along with the other servers. Rolling patches out to individual servers in your farm is inefficient and unreliable. Patches often fail on an individual server. Problems are not realized until users have conflicts or the server has an outage. Once that happens, getting the server back into sync with the rest of the farm is challenging and sometimes requires a full reimaging of the machine.

With Citrix Provisioning, patch management for server farms is simple and reliable, you start out managing your golden image and you continue to manage that single golden image. All patching is done in one place and then streamed to your servers when they boot-up. Server build consistency is assured because all your servers are using a single shared copy of the disk image.

If a server becomes corrupted, reboot it and it’s instantly back to the known good state of your master image. Upgrades are fast. Once you have your updated image ready for production you assign the new image version to the servers and reboot them. In the time it takes machines to reboot you can deploy the new image to any number of servers. Roll-backs can be done in the same manner so problems with new images do not impact your servers or your users for an extended time.

Benefits for desktop administrators

With Citrix Virtual Apps and Desktops, desktop administrators use Citrix Provisioning streaming technology to simplify, consolidate, and reduce the costs of both physical and virtual desktop delivery.
Many organizations are exploring desktop virtualization. While virtualization addresses many of the consolidations and simplified management needs of IT, configuring it also requires the deployment of supporting infrastructure. Without Citrix Provisioning, storage costs can put desktop virtualization out of the budget. With Citrix Provisioning, IT can reduce the amount of storage required for VDI by as much as 90 percent. At the same time the ability to manage a single image rather than hundreds or thousands of desktops significantly reduces the cost, effort, and complexity for desktop administration.

Different types of workers across the enterprise need different types of desktops. Some require simplicity and standardization, while others require high performance and personalization. Citrix Virtual Apps and Desktops can meet these requirements in a single solution using FlexCast™ delivery technology. With FlexCast™, IT can deliver every type of virtual desktop - each tailored to meet the performance, security, and flexibility requirements of each individual user.

Not all desktop applications are supported by virtual desktops. For these scenarios, IT can still reap the benefits of consolidation and single image management. Desktop images are stored and managed centrally in the data center and streamed out to physical desktops on demand. This model works well for standardized desktops such as those in lab and learning environments, call centers, and “thin client” devices used to access virtual desktops.

The Citrix Provisioning solution

Citrix Provisioning streaming technology allows computers to be provisioned and reprovisioned in real time from a single shared-disk image. Using a single shared image enables administrators to completely eliminate the need to manage and patch individual systems. Instead, all image management is done on the master image. The local hard disk drive of each system is used for runtime data caching. In some scenarios, the disk is removed from the system entirely, which reduces power usage, system failure rates, and security risks.

The Citrix Provisioning infrastructure is based on a software-streaming technology. After you install and configure Citrix Provisioning components, a virtual disk is created from a device’s hard drive. This disk is created by taking a snapshot of the OS and application image, and then storing that image as a virtual disk file on the network. The device that is used during this process is seen as a master target device. The devices that use those vDisks are called target devices.

A virtual disk exists on:
• a Citrix Provisioning server
• a file share
• a storage system that can communicate with the provisioning server with iSCSI, SAN, NAS, or CIFS connectivity
vDisks can be assigned to a single target device in private image mode, or to multiple target devices as standard image mode.

When a target device is turned on, it is set to boot from the network and to communicate with a provisioning server. The following occurs:

1. Processing takes place on the target device.
2. The target device downloads the boot file from a provisioning server and initiates the boot sequence.
3. Based on the device boot configuration settings, the appropriate virtual disk is located, then mounted on the provisioning server.

The software on that virtual disk is streamed to the target device as needed. To the target device, the virtual disk appears like a regular hard drive to the system.

Instead of immediately pulling all the virtual disk contents down to the target device, the data is brought across the network in real time, as needed. This approach allows a target device to get a new operating system and software in the time it takes to reboot, without requiring a visit to a workstation. This approach decreases the network bandwidth required by traditional disk imaging tools, which supports a larger number of target devices on your network without impacting overall network performance.

Components

May 10, 2019

This article provides an overview of Citrix Provisioning components.
License server

The license server is installed within the shared infrastructure or you can use an existing Citrix License Server. You select the license server when running the Configuration Wizard for the first time. All Citrix Provisioning servers within the farm must communicate with the license server.

Citrix Provisioning database

The database stores all system configuration settings that exist within a farm. Consider:

- Only one database can exist within a farm.
- All provisioning servers in that farm must be able to communicate with that database.
- Choose to use an existing SQL Server database or install SQL Server Express, which is free and available from Microsoft.

Note:
The database server is selected when the Configuration Wizard is run on a Citrix Provisioning server.

Citrix Provisioning console

The Citrix Provisioning console is a utility that is used to manage your Citrix Provisioning implementation. After logging on to the console, you select the farm that you want to connect to. Your administrative role determines what you can view in the console and manage in the farm.

Network services

Network services include a DHCP service, Preboot Execution Environment (PXE) service, and a TFTP service. These service options can be used during the boot process to retrieve IP addresses. These options can also be used to locate and download the boot program from the provisioning server to the target device. Alternative boot options are also available.

Tip:
Network services can be installed with the product installation, and then configured using the Configuration Wizard.

Farms

A farm represents the top level of a Citrix Provisioning infrastructure. The farm is created when the Configuration Wizard is run on the first Citrix Provisioning server added to that farm.
All sites within a farm share that farm’s Microsoft SQL database.

The console is not directly associated with the farm. Remote administration is supported on any console that can communicate with that farm’s network.

Stores

A farm contains one or more stores. A store is a logical name for a physical or virtual disk storage location. The store name is the common name used by all provisioning servers within the farm.

Sites

One or more sites can exist within a farm. The first site is created with the Configuration Wizard and is run on the first provisioning server in the farm.

Sites are represented in the console as follows:

Citrix Provisioning servers

A Citrix Provisioning server is any server that has Stream Services installed. The Stream Service is used to stream software from vDisks to target devices. In some implementations, vDisks reside directly on the provisioning server. In larger implementations, provisioning servers get the virtual disk from a shared-storage location on the network.

Provisioning servers also exchange configuration information with the Citrix Provisioning database. Provisioning server configuration options are available to ensure high availability and load balancing of target device connections.

Virtual disks

A virtual disk exists as disk image file on a provisioning server or on a shared storage device. A virtual disk consists of a .vhdx base image file, any associated properties files (.pvp), and if applicable, a chain of referenced VHD differencing disks (.avhdx).

vDisks are assigned to target devices. Target devices boot from and stream software from an assigned virtual disk image.
Virtual disk pools

Virtual disk pools are the collection of all vDisks available to a site. There is only one virtual disk pool per site.

Virtual disk update management

The virtual disk Update Management feature is used to configure the automation of virtual disk updates using virtual machines. Automated virtual disk updates can occur on a scheduled basis, or can be invoked directly from the console. This feature supports updates detected and delivered from Electronic Software Delivery (ESD) servers, Windows updates, or other pushed updates.

Virtual disk modes

Virtual disk images are configured for **Private Image mode** or **Standard Image mode**. Consider the following when using virtual disk images:

- In Private Image mode, a virtual disk image is used as a single device supporting read/write characteristics.
- In standard image mode, a virtual disk image is used by multiple devices, but is read-only when using various caching options.

Virtual disk chain

Any updates to a virtual disk base image can be captured in a versioned differencing disk, leaving the original base disk image unchanged.

Each time a virtual disk is updated, a new version of the VHDX differencing disk can be created. The file name is numerically incremented, as shown in the following table:

<table>
<thead>
<tr>
<th>Virtual disk image</th>
<th>VHDX file name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Image</td>
<td>win7dev.avhdx</td>
</tr>
<tr>
<td>Version 1</td>
<td>win7dev.1.avhdx</td>
</tr>
<tr>
<td>Version 2</td>
<td>win7dev.2.avhdx</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Version N</td>
<td>win7dev.N.avhdx</td>
</tr>
</tbody>
</table>
Booting a virtual disk

The following image shows the method used to locate and boot from a virtual disk on a server share:

The preceding image illustrates the following steps:

1. The target device begins the boot process by communicating with a provisioning server and acquiring a license.
2. The provisioning server checks the virtual disk pool for virtual disk information, which includes identifying the servers providing the virtual disk to the target device. The server also verifies the path information used to get to the virtual disk. In this example, the virtual disk shows that only one provisioning server in this site can provide the target device with the virtual disk. The virtual disk physically resides on the Finance Server (shared storage at the farm level).
3. The provisioning server locates the virtual disk on Finance Server, then streams that virtual disk, on demand, to the target device.

Virtual disk examples

The following examples provide information about how Citrix Provisioning uses virtual disk images.

Example one

The physical virtual disk for Windows 10 resides on a Citrix Provisioning server local to a site. The logical name that is given to this physical location is the store.

Store name (logical name): bostonwin10
Physical path to the virtual disk is: C:\vDisks\n
Example two

The physical virtual disk for Windows 10 resides on a network share (FinancevDisks) at the farm level.

Store name (logical name): FinancevDisks

Physical path to the virtual disk for all Provisioning Servers in the farm is: \financeserver\financevdisks\n
Device collections

Device collections are logical groups of target devices. A target device is a device, such as a desktop computer or a server, that boots and gets software from a virtual disk on the network. A device collection might represent a physical location, a subnet range, or a logical grouping of target devices. Creating device collections simplifies device management by enabling you to perform actions at the collection level rather than at the target-device level.

Views

Views allow you to quickly manage a group of target devices. Views are typically created according to business needs. For example, a view represents a physical location, such as a building, or a user type. A target device is a member of any number of views, although it is a member of only one device collection.

Views are represented in the console as follows:

![Views](image)

Farm views can include any target device that exists in the farm. Site views include only target devices that exist within a site.

Product utilities

May 10, 2019

Citrix Provisioning includes several tools for configuring and managing deployment. After you have installed the software, the following tools become available:
- Installation Wizard – Use this wizard to install Citrix Provisioning components to create provisioning servers and master target devices.
- Configuration Wizard – Use this wizard to configure provisioning server components, including network services, and database permissions. This wizard is installed during the Citrix Provisioning installation process.
- Imaging Wizard – On the master target device, run the Citrix Provisioning Imaging Wizard. This process creates a virtual disk file in the database and then images that file without having to physically go to a Citrix Provisioning server. This utility is installed during the target device installation process.
- Virtual Disk Status Tray – Use this target device utility to get target-device connection status and streaming statistical information. This utility is installed during the Citrix Provisioning target device installation process.
- Citrix Virtual Apps and Desktops Setup Wizard – Creates virtual machines (VMs) on a Citrix Virtual Apps and Desktops hosted hypervisor server from an existing machine template. It creates and associates target devices to those VMs, assigns a virtual disk to each target device, then adds all virtual desktops to the catalog.
- Streamed VM Setup Wizard – Creates VMs on a hosted hypervisor from an existing machine template, creates, and associates target devices for each machine within a collection, then assigns a virtual disk image all the VMs.
- Virtual Host Connection Wizard – Adds new virtual host connections to the virtual disk Update Manager.
- Managed virtual disk Setup Wizard – Adds new managed vDisks to the virtual disk Update Manager.
- Update Task Wizard – Configures a new update task for use with virtual disk Update Manager.
- Boot Device Manager – Use this utility to configure a boot device, such as a USB or CD-ROM, which then receives the boot program from Citrix Provisioning.
- Upgrade Utilities – There are several upgrade methods available. The method you select depends on your network requirements.
- Programming Utilities – Citrix Provisioning provides programmers with a management application programming utility and a command line utility, accessed by all users. However, users can only use those commands associated with their administrator privileges. For example, a Device Operator is able to use this utility to get a list of all target devices that they have access to.

Administrator roles

May 10, 2019

The administrative role assigned to a user, or a group of users, controls the ability to view and manage
objects within a Citrix Provisioning implementation. All members within a group share administrative privileges within a farm. An administrator has multiple roles if they belong to more than one group. Groups are managed at the farm level through the Console's Farm Properties window.

The following roles exist within a Citrix Provisioning farm:

- **Farm Administrator:** Farm administrators can view and manage all objects within a farm. Farm administrators can also create sites and manage role memberships throughout the entire farm.

- **Site Administrator:** Site administrators have full management access to the all objects within a site. For example, a site administrator can manage Citrix Provisioning servers, site properties, target devices, device collections, or virtual disk elements. A site administrator can also manage device administrator and device operator memberships.

- **Device Administrator:** Device administrators perform all device-collection management tasks on collections to which they have privileges. These tasks include viewing virtual disk properties (read-only) and assigning or removing virtual disks from a device. Tasks also include booting or shutting down target devices, editing device properties, and sending messages to target devices within a device collection to which they have privileges.

- **Device Operator:** Device operators view target device properties (read-only) and boot or shut down target devices. Also, device operators send messages to target devices within a device collection to which they have privileges.

Collections

May 10, 2019

Device collections allow you to create and manage logical groups of target devices. Creating device collections simplifies device management by performing actions at the collection level rather than at the target-device level.

Note:

A target device can only be a member of one device collection.

A device collection represents a physical location, a subnet range, or a logical grouping of target devices. For example, a collection consists of all target devices that use a particular virtual disk image, and the collection might consist of maintenance, test, and production devices.

Alternatively, three device collections can exist for a particular virtual disk; one consisting of production devices, one consisting of test machines, and another consisting of maintenance machines. In the proceeding examples, all devices in a given collection are assigned to the same virtual disk.

Depending on a sites preference, another collection use case might include the consolidation of test and maintenance devices into a single device collection. This use case manages virtual disk assign-
ments on a per device basis rather than a per collection basis. For example, create a device collection labeled Development consisting of five target devices, each one assigned to a particular virtual disk. Farm administrators create and manage device collections for sites they have security privileges to configure.

Expanding a **Device Collections** folder in the Console's tree allows you to view members of a device collection. To display or edit a device collection's properties, right-click on an existing device collection in the Console, then select the **Properties** menu option. The **Device Collection Properties** dialog displays. Use it to view or modify that collection.

You can perform actions on members of a device collection, such as rebooting all target devices members in this collection.

Citrix Provisioning console

May 10, 2019

Use the Citrix Provisioning console to manage components within a farm. The console can be installed on any machine that can access the farm. For more information about using the console to configure Citrix Provisioning, see the **Console** page.

Tip

To connect to a farm, see **Farm Tasks**.

Understanding the console window

In the console window, you can perform tasks when setting up, modifying, tracking, deleting, and defining the relationships among vDisks, target devices, and Citrix Provisioning servers.
Using the console tree

The tree is located in the left pane of the console window. It displays a hierarchical view of your network environment and managed objects within your network. The Details view display depends on the object you have selected in the tree and your user role.

In the tree, click + to expand a managed object node, or click - to collapse the node.

Basic tree hierarchy

Farm administrators can create sites, views, and stores within the farm. The farm level tree is organized as follows:

- Farm
 - Sites
 - Views
 - Stores

Site administrators generally manage those objects within sites to which they have privileges. Site's contain provisioning servers, a virtual disk pool, device collections, and views. The site level tree is organized as follows:

- Site
Using the details view

The right-hand pane of the console window contains the details view. This view provides information about the object selected in the tree, in table format. The types of objects that display in the view include provisioning servers, target devices, and vDisks. For more detailed information, right-click on the object, then select the Properties menu.

The tables that display in the details view can be sorted in ascending and descending order.

In the console, the objects that display and the tasks that you can perform depend on the assigned role.

Install Citrix Provisioning software components

January 15, 2019

Before installing and configuring Citrix Provisioning software and components from the product CD-ROM or from the download site, you should first understand the installation wizards that are described here. Then follow the installation and configuration procedures in the rest of the articles in this section.

Important:

Ensure that all Windows updates are current before installing Citrix Provisioning components. Sometimes, you need to install numerous updates. Citrix recommends that you reboot after installing all Windows updates. For Windows 10 1709, you must apply the OS update KB4093105, or later, before installing provisioning components.

Tip:

If you are using Linux streaming functionality, no new installation packages are provided at this release. Use the Provisioning Services 7.15 Linux DEB/RPM package. For example, after downloading the Citrix Provisioning 7.16 ISO, the target software for CentOS/Red Hat is pvs_RED_HAT_7.15_18089_x86_64.rpm.
Citrix licensing

CTX_Licensing.msi installs the Citrix licensing software on a server that can communicate with provisioning servers within your implementation.

Citrix Provisioning installation wizard

Run PVS_Server.exe or PVS_Server_x64.exe to install the following Citrix Provisioning components within a farm:

- Citrix Provisioning Stream Service
- Network Boot Services (optional)
- Configuration Wizard (runs after the installation wizard to configure installed components and creates the Citrix Provisioning database)
- Programming Utilities
- Boot Device Manager (BDM)

Note:
Installing from a UNC path is not supported.

Citrix Provisioning console wizard

Run PVS_Console.exe or PVS_Console_x64.exe to install the Citrix Provisioning console, which also includes the Boot Device Management utility. The console can be installed on any machine that can communicate with the Citrix Provisioning database.

Master target device installation wizard

For Windows: PVS_Device.exe or PVS_Device_x64.exe

Installs the target device software on a master target device. The master target device is used to create the 'golden image,' which is then saved to a vDisk file using the Imaging Wizard.

Upgrade wizard

The Upgrade Wizard must be installed and run in a folder that does not contain surrogate pair characters (Unicode code point after 0x10000). The Upgrade Wizard facilitates the automation of the upgrade process, and includes the following utilities:

- The UpgradeAgent.exe, which runs on the target device to upgrade previously installed product software.
The UpgradeManager.exe, which runs on the provisioning server to control the upgrade process on the target device.

Uninstall

Removing the software from your system requires that you uninstall both the provisioning server and target device components.

Uninstalling Citrix Provisioning

1. On the provisioning server, open the system’s Control Panel. From the Windows Start menu, select Settings, and then click Control Panel.
2. Double click on the Programs and Features icon.
3. Select Citrix Provisioning, then click the Uninstall menu option.

Uninstalling Windows target device software

1. Set the system BIOS to boot from the original hard drive.
2. Reboot the target device directly from the hard drive.
3. On the target device, open the system’s Control Panel.
4. Double-click on the Programs and Features icon.
5. Select the Citrix Provisioning, then click the Uninstall menu option.

Uninstalling the Citrix Provisioning console

1. On a machine in which the console is installed, open the system’s Control Panel.
2. Double click on the Programs and Features icon.
3. Select the Citrix Provisioning, then click the Uninstall menu option.

Pre-installation tasks

May 15, 2019

Complete the following tasks before installing and configuring Citrix Provisioning.

Important:

Ensure that all Windows updates are current before installing Citrix Provisioning components.
Citrix recommends that you reboot after installing all Windows updates.

Select and configure the Microsoft SQL database

Only one database is associated with a farm. You can install the Citrix Provisioning database software on:

- An existing SQL database, if that machine can communicate with all provisioning servers within the farm.
- A new SQL Express database machine, created using SQL Express, which is free from Microsoft.

In a production environment, best practice is to install the database and Citrix Provisioning server component software on separate servers, to avoid poor distribution during load balancing.

The database administrator can create the Citrix Provisioning database. In this case, provide the MS SQL database administrator with the file that is created using the `DbScript.exe` utility. This utility is installed with the provisioning software.

Database sizing

When the database is created, its initial size is 20 MB with a growth size of 10 MB. The database log initial size is 10 MB with a growth size of 10%.

The base amount of space required is 112 KB, which does not change. The base image includes the following:

- DatabaseVersion record requires approximately 32 KB
- Farm record requires approximately 8 KB
- DiskCreate record requires approximately 16 KB
- Notifications require approximately 40 KB
- ServerMapped record requires approximately 16 KB

The variable amount of space required, based on objects, is as follows:

- Access and groupings (each)
 - A User group that has access to the system requires approximately 50 KB
 - A Site record requires approximately 4 KB
 - A Collection requires approximately 10 KB
- FarmView (each)
 - FarmView requires approximately 4 KB
 - FarmView/Device relationship requires approximately 5 KB
- SiteView (each)
- SiteView requires approximately 4 KB
- SiteView/Device relationship requires approximately 5 KB

• Target device (each)
 - A target device requires approximately 2 KB
 - DeviceBootstrap requires approximately 10 KB
 - Device:Disk relationship requires approximately 35 KB
 - Device:Printer relationship requires approximately 1 KB
 - DevicePersonality requires approximately 1 KB
 - DeviceStatus when a Device boot requires approximately 1 KB
 - DeviceCustomProperty requires approximately 2 KB

• Disk (each)
 - Unique disk requires approximately 1 KB
 - DiskVersion requires approximately 3 KB
 - DiskLocator requires approximately 10 KB
 - DiskLocatorCustomProperty requires approximately 2 KB

• Provisioning server (each)
 - A server requires approximately 5 KB
 - ServerIP requires approximately 2 KB
 - ServerStatus when a Server boot requires approximately 1 KB
 - ServerCustomProperty requires approximately 2 KB

• Store (each)
 - Store requires approximately 8 KB
 - Store:Server relationship requires approximately 4 KB

• Disk update (each)
 - VirtualHostingPool requires approximately 4 KB
 - UpdateTask requires approximately 10 KB
 - DiskUpdateDevice requires approximately 2 KB
 - Each DiskUpdateDevice:Disk relationship requires approximately 35 KB
 - Disk:UpdateTask relationship requires approximately 1 KB

The following changes cause the size requirements to increase:

• Each processed task (for example: Virtual disk versionings merge) requires approximately 2 KB.
• If auditing is turned on, each change made by the administrator in the Citrix Provisioning console, MCLI, or PowerShell interface requires approximately 1 KB.

Database mirroring

For Citrix Provisioning to support MS SQL database mirroring, the database needs to be configured with **High-safety mode with a witness (synchronous)**.
When using the Database Mirroring feature, the SQL native client is required on the server. If the native SQL client does not exist, the option to install SQL native client x64 or x86 is presented when SQL is installed.

For information on how to configure and use database mirroring, see Database mirroring.

Database clustering

To implement database clustering, follow Microsoft's instructions then run the Citrix Provisioning Configuration wizard. No additional steps are required because the wizard considers the cluster as a single SQL Server.

Configure authentication

Citrix Provisioning uses Windows authentication for accessing the database. Microsoft SQL Server authentication is not supported except by the Configuration Wizard.

Configuration wizard user permissions

The following MS SQL permissions are required for the user that is running the Configuration wizard:

- `dbcreator` for creating the database
- `securityadmin` for creating the SQL logins for the Stream and SOAP services

If you are using MS SQL Express in a test environment, you can choose to give the user that is running the Configuration wizard `sysadmin` privileges, the highest level for the database.

Alternatively, if the database administrator has provided an empty database, the user running the Configuration wizard must be the owner of the database. Also, the user must have the View any definition permission (set by the database administrator when the empty database is created).

Service account permissions

The user context for the Stream and SOAP services requires the following database permissions:

- `db__datareader`
- `db__datawriter`
- Execute permissions on stored procedures

Datreader and Datawriter database roles are configured automatically for the Stream and SOAP Services user account using the Configuration wizard. The Configuration wizard assigns these permissions provided the user has securityadmin permissions. In addition, the service user must have the following system privileges:
• Run as service
• Registry read access
• Access to Program Files\Citrix\Citrix Provisioning
• Read and write access to any virtual disk location

Determine which of the following supported user accounts the Stream and SOAP services run under:

• Network service account
 Minimum privilege local account, which authenticates on the network as a computers domain machine account
• Specified user account (required when using a Windows Share), which can be a Workgroup or domain user account

Support for KMS licensing requires the SOAP Server user account to be a member of the local administrators group.

Tip:
Authentication is not common in workgroup environments, as a result, minimum privilege user accounts must be created on each server and each instance must have identical credentials.

Determine the appropriate security option to use in this farm. Only one option can be selected per farm and the selection you choose impacts role-based administration. For security options:

• Use Active Directory groups for security (default); select this option if you are on a Windows Domain running Active Directory. This option enables you to use Active Directory for Citrix Provisioning administration roles.
 Note:
 Windows 2,000 Domains are not supported.
• Use Windows groups for security. Select this option if you are on a single server or in a Workgroup. This option enables you to use the Local User/Groups on that particular server for Citrix Provisioning administration roles.

Console users do not directly access the database.

Minimum permissions required for more provisioning functionality include:

• Citrix Virtual Apps and Desktops Setup wizard, Streamed VM Setup wizard, and ImageUpdate service
 – vCenter, SCVMM, and Citrix Hypervisor minimum permissions
 – Permissions for the current user on an existing Citrix Virtual Apps and Desktops controller
 – A Citrix Provisioning console user account configured as a Citrix Virtual Apps and Desktops administrator added to a provisioning SiteAdmin group or higher
- Active Directory Create Accounts permission to create accounts in the console. To use existing accounts, Active Directory accounts have to exist in a known OU for selection.
- If using personal vDisks with Citrix Virtual Apps and Desktops, the SOAP Server user account must have Citrix Virtual Apps and Desktops full administrator privileges.

 • AD account synchronization: create, reset, and delete permissions
 • Virtual disk: Privileges to perform volume maintenance tasks

Kerberos security

By default, the Citrix Provisioning console, Imaging wizard, PowerShell snap-in, and MCLI use Kerberos authentication when communicating with the SOAP Service in an Active Directory environment. Part of the Kerberos architecture is for a service to register (create a service principal name, SPN) with the domain controller (Kerberos Key Distribution Center). The registration is essential because it allows Active Directory to identify the account that the SOAP service is running in. If the registration is not performed, the Kerberos authentication fails and Citrix Provisioning falls back to using NTLM authentication.

The Citrix Provisioning SOAP Service registers every time the service starts and unregisters when the service stops. However, the registration fails if the service user account does not have permission. By default, the Network Service account and domain administrators have permission while normal domain user accounts do not.

To work around this permissions issue, do either of the following:

 • Use a different account that has permissions to create SPNs.
 • Assign permissions to the service account.

<table>
<thead>
<tr>
<th>Account Type</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Account</td>
<td>Write Validated SPN</td>
</tr>
<tr>
<td>User Account</td>
<td>Write Public Information</td>
</tr>
</tbody>
</table>
Network components

August 6, 2019

This article describes the tasks necessary to carry out to manage the network components within your streaming implementation.

Preparing network switches

Network switches provide more bandwidth to each target device and are common in networks with large groups of users. The use of Citrix Provisioning in the network might require changes to switch configurations. When planning an implementation, give special consideration to managed switches.

Note:

For Citrix Provisioning networks, you must specify all network switch ports to which target devices are connected as edge-ports.

Managed switches usually offer loop detection software. This software turns off a port until the switch is certain the new connection does not create a loop in the network. While important and useful, the delay prevents your target devices from successfully performing a PXE boot.

This problem manifests itself in one of the following ways:

• Target device (not Windows) login fails.
• Target device appears to hang during the boot process.
• Target device appears to hang during the shutdown process.

To avoid this problem, you must disable the loop detection function on the ports to which your target devices are connected. Specify all ports to which target devices are connected as edge-ports. Specifying all ports has the same effect as enabling the fast link feature in older switches (disables loop detection).

Note:

A network speed of at least 100 MB is highly recommended. If using a 10 MB hub, check whether your network card allows you to clear auto-negotiation. Turning auto-negotiation off can resolve potential connection problems.

Switch manufacturers

This feature is given different names by different switch manufacturers. For example:

• Cisco; PortFast, Spanning Tree Protocol (STP) Fast Link, or switch port mode access
Using Uniform Naming Convention (UNC) names

A Universal Naming Convention (UNC) format name defines the location of files and other resources that exist on a network. UNC provides a format so that each shared resource can be identified with a unique address. Windows and many network operating systems (NOSs) support UNC.

With Citrix Provisioning, UNC format names can be used to specify the location of the OS Streaming database for all provisioning servers. UNC format also specifies the location of a particular virtual disk.

Syntax

UNC names conform to the \SERVERNAME\SHARENAME syntax, where SERVERNAME is the name of the provisioning server and SHARENAME is the name of the shared resource.

UNC names of directories or files can also include the directory path under the share name, with the following syntax:

\SERVERNAME\SHARENAME\DIRECTORY\FILENAME

For example, to define the folder that contains your configuration database file in the following directory:

C:\Program Files\Citrix\Provisioning Services

On the shared provisioning server (server1), enter:

\server1\Citrix Provisioning

Note:

UNC names do not require that a resource is a network share. UNC can also be used to specify local storage for use by only a local machine.

Accessing a remote network share

To access a remote network share using a UNC format name, the Stream Service must have a user account name and password on the remote system.

To use a UNC name to access a remote network share:
1. On the provisioning server, create a user account under which the stream service runs. This account must have a password assigned, otherwise the stream service fails to log in correctly. Your stream service shares the user account and password, or separate user accounts and passwords can be set up for each service.

2. Share the virtual disk and configuration database folders. In Windows Explorer, right-click on the folder, then select **Properties**. Click the **Sharing** tab, then select the **Share this** folder radio button. Enter or select a share name.

3. Make sure permissions are set to allow full control of all files in the virtual disk folder and database folder. Click the **Permissions** button on the **Sharing** tab, or click the **Security** tab, then set the correct permissions.

4. For the Stream Service:
 - Go to **Control Panel > Computer Management > Component Services**, right-click the **Stream Service**, and select **Properties**.
 - Click the **Log On** tab. Change the Logon to: setting to **This Account**, and set up the service to log in to the user and password configured in Step 1.

5. Verify that all Stream Services are restarted. The Configuration Wizard performs this step automatically. Stream services can also be started from the console or from the **Control Panel**.

Note:

Do not use a mapped drive letter to represent the virtual disk or database location directories when configuring Stream Services. The Stream service cannot access folders using a mapped drive letter for the directory because the mapped drives did not exist when the services started at boot time.

Reducing network utilization

Windows provides several features that presume the use of a large, fast hard-disk. While many of these features are useful on a diskless system where the disk is on the network, using them decreases cache effectiveness and increases network utilization. In environments that are sensitive to network utilization, consider reducing the effect of these features by disabling them or adjusting their properties.

In particular, offline folders are not useful on a diskless system and can be detrimental to the performance of Windows on a diskless system. Offline folders cache network files — a feature that is not applicable to a system where all files are on the network.

All of these features are configurable through the target device itself. The following features are configurable in the Windows **Group Policy**.

- Offline Folders
- Event Logs
Configure Windows features on a standard virtual disk

1. Prepare a Standard Image virtual disk for configuration.
 • Shut down all target devices that use the Standard Image virtual disk.
 • In the Citrix Provisioning console, change the Disk Access Mode to Private Image.
 • Boot one target device.
2. Configure one or more features.
3. Prepare the Standard Image virtual disk for use
 • Shut down the target device previously used to configure the virtual disk.
 • From the Console, change the Disk Access Mode to Standard Image.
 • Boot one or more target devices.

Configure the recycle bin

If you disable the recycle bin, files are deleted immediately. Therefore, the file system reuses respective disk sectors and cache entries sooner.

To configure the recycle bin:

1. From the target device, or Windows Explorer, right-click the Recycle Bin.
2. Select Properties.
4. Select from the following settings:
 • Use one setting for all drives
 • Do not move files to the Recycle Bin. Remove files immediately when deleted.

Configure offline folders

Disabling offline folders is recommended to prevent Windows from caching network files on its local disk – a feature with no benefit to a diskless system. Configure this feature from the target device or using Windows Group Policy.

To configure from the target device:

1. Open Windows Explorer.
2. Select Tools > Folder Options.
3. Select Offline Folders.

To configure using the Windows Group Policy:

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for: administration templates, network, or offline files. Policy setting objects include:
• Policy setting object: Disable user configuration of offline files (Enabled).
• Policy setting object: Synchronize all offline files before logging off (Disabled).
• Policy setting object: Prevent use of the Offline Files folder (Enabled).

Configure event logs

Reduce the maximum size of the Application, Security, and System Logs. Configure this feature using the target device or Windows Group Policy.

To configure event logs, on the target device:

1. Select Start > Settings > Control Panel.
2. Open Administrative Tools > Event Viewer.
3. Open the properties for each log.
4. Set the Maximum log size to a relatively low value. Consider 512 kilobytes.

To configure using the Windows Group Policy:

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for the following object:

Disable Windows automatic updates

If you have the Windows automatic updates service running on your target device, Windows periodically checks a Microsoft website and looks for security patches and system updates. Uninstalled updates are downloaded and installed automatically. Normally, an automatic update is a useful feature for keeping your system up-to-date. However, in a Citrix Provisioning implementation using standard image mode, this feature can decrease performance, or even cause more severe problems. Performance degradations occur because the Windows automatic updates service downloads programs that fill the write cache. When using the target device’s RAM cache, filling the write cache can cause your target devices to stop responding.

Rebooting the target device clears both the target device and Citrix Provisioning write cache. Rebooting after an auto-update means that the automatic update changes are lost, which defeats the purpose of running automatic updates.
Tip:
To make Windows updates permanent, apply them to a virtual disk while it is in Private Image mode.

To prevent filling your write cache, disable the Windows Automatic Updates service for the target device used to build the virtual disk.

To disable the Windows automatic updates feature:

2. Select System.
3. Click the Automatic Updates tab.
4. Select the Turn Off Automatic Updates radio button.
5. Click Apply.
6. Click OK.
7. Select Services.
8. Double-click the Automatic Updates service.
9. Change the Startup Type by selecting Disabled from the menu.
10. If the Automatic Updates service is running, click Stop to stop the service.
11. Click OK to save your changes.

To make Windows updates permanent:

1. Shut down all target devices that share the virtual disk.
2. Change the virtual disk mode to Private image.
3. Boot one target device from that virtual disk.
4. Apply Windows updates.
5. Shut down the target device.
7. Boot all target devices that share this virtual disk.

Managing roaming user profiles

A Roaming User Profile is a user profile that resides on a network share. It consists of files and folders containing the user’s personal settings and documents. When a user logs on to a target device system in the domain, Windows copies the respective profile from a network share to the target device’s disk. When logging off, Windows synchronizes the user profile on the target device’s hard disk with the user profile on the network share.

For a diskless target device, its disk is actually a virtual disk residing in shared storage. Therefore, the profile returns back to the shared storage containing the virtual disk. Since the persistent user data always resides on shared storage, Windows does not need to download the profile, saving time,
network bandwidth, and file cache. Since some of the files included in the profile can grow large, the savings can be significant.

Using Roaming User Profiles with diskless systems involves configuring relevant policies and using Folder Redirection.

Although unrelated to Roaming User Profiles, the Offline Folders feature affects diskless systems similarly. Disabling this feature avoids the same effects.

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for the following objects.

Configuring roaming user profiles

Configuring Roaming User Profiles for diskless systems enables roaming without having to download potentially large files in the profile.

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for the following objects.

To prevent the accumulation of Roaming User Profiles on a virtual disk:

<table>
<thead>
<tr>
<th>Object</th>
<th>Computer configuration\Administrative templates\System\Logon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Delete cached copies of roaming profiles.</td>
</tr>
<tr>
<td>Setting</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

To exclude directories with potentially large files from download:

<table>
<thead>
<tr>
<th>Object</th>
<th>User configuration\Administrative templates\System\Logon, Log off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Exclude directories in roaming profile</td>
</tr>
<tr>
<td>Setting</td>
<td>Enabled</td>
</tr>
<tr>
<td>Properties</td>
<td>Prevent the following directories from roaming with the profile: Application Data; Desktop; My Documents; Start Menu.</td>
</tr>
</tbody>
</table>
Configure folder redirection with roaming user profiles

Using Folder Redirection with Roaming User Profiles and diskless systems retains the availability of user documents.

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for the objects that follow.

To configure folder redirection:

1. Create a network share (\ServerName\ShareName) to contain the redirected user folders.
2. Give Full Control permission to everyone for the network share.
3. Enable Folder Redirection.

<table>
<thead>
<tr>
<th>Object</th>
<th>Configuration\Administrative templates\System\Group policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Folder Redirection policy processing</td>
</tr>
<tr>
<td>Setting</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Redirect the **Application Data** folder.

<table>
<thead>
<tr>
<th>Object</th>
<th>Users configuration\Windows settings\Folder redirection\Application data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Basic or Advanced. Target folder location: \ServerName\ShareName%username%\Application Data</td>
</tr>
</tbody>
</table>

Redirect the desktop folder.

<table>
<thead>
<tr>
<th>Object</th>
<th>Users configuration\Windows settings\Folder redirection\Desktop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Basic or Advanced. Target folder location: \ServerName\ShareName%username%\Desktop</td>
</tr>
</tbody>
</table>

Redirect the **My Documents** folder.
Object

Users configuration\Windows settings\Folder redirection\Desktop

Properties

Basic or Advanced. Target folder location: \
ServerName\ShareName\%username%\My Documents

Redirect the Start Menu folder.

Users configuration\Windows settings\Folder redirection\Desktop

Properties

Basic or Advanced. Target folder location: \
ServerName\ShareName\%username%\Start Menu

Disable offline folders

Disabling Offline Folders avoids the unnecessary caching of files on diskless systems with network shares.

On the domain controller, use the Microsoft Management Console with the Group Policy snap-in to configure the domain policies for the object that follows.

To disable offline folders:

Object

Users configuration\Windows settings\Folder redirection\Desktop

Policy setting

Disable user configuration of Offline Files (Enabled).

Policy setting

Synchronize all Offline Files before logging off (Disabled).

Policy setting

Prevent use of Offline Files folder (Enabled).

Booting through a router

You can boot target devices through a network router. This allows the provisioning server to exist on a different subnet from the target device. Since conditions vary from customer to customer, adjustments are be needed for different network configurations.
The following configuration diagram separates the Provisioning Server from the target device by using a Windows 2000 Server platform acting as a router.

![Configuration Diagram]

Configuring for DHCP

In this configuration, a DHCP server must be active on the local subnet, 197.100.x.x, of the target device. In the configuration example above, the DHCP service is running on the same machine acting as a router between the two subnets. It is not mandatory that the DHCP service actually runs on the router itself. This DHCP server provides the IP address and the PXE boot information to the target device.

Configure the DHCP service to provide valid IP addresses to any target device booting on the local subnet, 197.100.x.x.

To provide the PXE boot information to the target device, configure the following options in your DHCP server:

1. **DISABLE Option 60 (Class ID)**
2. **Enable Option 66 (Boot Server Host Name)** – Enter the IP address of the TFTP Server. In this configuration, the value is 10.64.0.10.
3. **Enable Option 67 (Boot filename)** – Enter the name of the boot file. For a standard configuration, the file name is ARDBP32.bin.

Configure Provisioning Services for PXE

Using the console, configure the bootstrap settings to use the **Gateway and Subnet mask** fields. These fields reflect the gateway and subnet to be used by the target device. In this case, they are 197.100.x.x for the gateway, and 255.255.255.0 for the netmask.

Verify the TFTP service is running on the Provisioning Server.

The PXE service on the provisioning server is not necessary since options 66 and 67 in the router's DHCP service provide the same information to the target device. Stop the PXE service on the provi-
 Provisioning server if you have no target devices on the server subnet needing the functionality. The same is true for any DHCP service running on the provisioning server itself.

Running PXE and DHCP on the same computer

If PXE and DHCP are running on the same provisioning server, an option tag must be added to the DHCP configuration. When both are running on the same server, the target devices that the DHCP server is also the PXE boot server. Verify that option tag 60 is added to your DHCP scope. Citrix Provisioning setup automatically adds this tag to your scope as long as the Microsoft DHCP server is installed and configured before installing provisioning. The Configuration Wizard sets-up the Tellurian DHCP Server configuration file if you use the wizard to configure provisioning.

The following is an example Tellurian DHCP Server configuration file which contains the option 60 tag:

```plaintext
max-lease-time 120;

default-lease-time 120;

option dhcp-class-identifier "PXEClient";

subnet 192.168.4.0 netmask 255.255.255.0 {
  option routers 192.168.123.1;
  range 192.168.4.100 192.168.4.120;
}
```

Managing multiple Network Interface Cards (NICs)

Citrix Provisioning can run redundant networks between the servers and the target devices. Redundant networks require both the servers and the target devices be equipped with multiple NICs.

Configure multiple NICs on the target device into a virtual team by using Manufacturer’s NIC teaming drivers, or into a failover group using the provisioning NIC failover feature.
NIC Teaming and NIC Failover features provide resilience to NIC failures that occur after the system is up and running. It is only after the OS has loaded that the actual NIC Team or NIC Failover group is established. If NIC failure occurs after being established:

- The NIC Teaming feature allows the system to continue to function because the virtual MAC address is the same as the physical MAC address of the primary boot NIC.
- The NIC Failover feature allows the system to continue to function because it automatically fails over to another NIC that was previously configured for this system.

When using a template with multiple NICs, Citrix Provisioning overwrites the network configuration of the first NIC. All the other NICs' configurations are not changed. For hosts with multiple network resources, the Citrix Virtual Apps and Desktops Setup wizard displays available network resources available to the host. It allows you to select the network resource to associate with the first NIC.

Tip:

When a machine powers up, the BIOS goes through the list of available boot devices and the boot order. Boot devices can include multiple PXE-enabled NICs. Citrix Provisioning uses the first NIC in the list as the primary boot NIC, the NIC's MAC address is used as the lookup key for the target device record in the database. If the primary boot NIC is not available at boot time, Citrix Provisioning fails to locate the target device record in the database. Consider that a non-primary NIC only processes the PXE boot phase. A workaround would be to add a separate target device entry for each NIC on each system, and then maintain synchronization for all entries. Citrix does not recommend this process unless the successful startup of a system is considered critical to the continued operation of the system that is already running.

NIC teaming

When configuring NIC teaming, consider the following requirements:

- Citrix Provisioning supports Broadcom, HP branded ‘Moon shot’ Mellanox NICS and Intel NIC teaming drivers. A virtual disk that is built after configuring NIC teaming can run Standard or Private Image Mode. Broadcom NIC Teaming Drivers v9.52 and 10.24b are not compatible with Citrix Provisioning target device drivers.
- Teaming of multi-port network interfaces is not supported.
- Multi-NIC is supported for Citrix Virtual Apps and Desktops virtual machine desktops. Using the wizard, Citrix Provisioning allows you to select the network to associate with the provisioning NIC (NIC 0). The Delivery Controller provides the list of associated network resources for host connections.
- The target device operating system must be a server-class operating system.
- The new virtual team NIC MAC address has to match the physical NIC that performs the PXE boot.
• NIC teaming software is installed and configured before the target device software.
• Configure NIC teaming and verify that the selected teaming mode is supported by the application and the network topology. It exposes at least one virtual team NIC to the operating system.
• When provisioning machines to an SCVMM server, the setup wizard automatically changes the network configuration of both the first legacy NIC and the second synthetic NIC.
• During the master target device installation process, provisioning target device client drivers bind to the new virtual team NIC MAC address. If all physical NICs have been teamed up to a single virtual NIC, the installer automatically chooses the virtual NIC silently, without prompting.
• If changes are required, Citrix Provisioning target device software must be uninstalled before changing the teaming configuration. Reinstall after changes are complete. Changes to teaming configurations on a master target device that has target device software installed results in unpredictable behavior.
• When installing Citrix Provisioning target device software on NT6.x systems within a multi-NIC environment, all available NICs can be used. Therefore bindcfg.exe is no longer required and no longer installed with target device software.

NIC failover

A provisioning target device or server can be configured to support failover between multiple NICs. This feature supports any NIC brand or mixture of brands. Citrix Provisioning supports NIC failover for vDisks in either Standard and Private Image Mode. Consider the following:

• The PXE boot NIC is considered the primary target device MAC address, which is stored in the provisioning database.
• You define the failover group of NICs when you run the Citrix Provisioning target device installer on the Master Target Device. If the machine has more than one NIC, the user is prompted to select the NICs in which to bind. Select all the NICs that participate in NIC failover.
• A target device only fails over to NICs that are in the same subnet as the PXE boot NIC.
• Teaming of multi-port network interfaces is not supported with Citrix Provisioning.
• If the physical layer fails, such as when a network cable is disconnected, the target device fails over to the next available NIC. The failover timing is instantaneous.
• The NIC failover feature and Citrix Provisioning high availability feature complement each other providing network layer failover support. If a failure occurs in the higher network layer, the target device fails over to the next Provisioning Server subject to high availability rules.
• The next available NIC from the failover group is used if the NIC fails and the target device reboots. NICs must be PXE capable and PXE enabled.
• If a virtual NIC (teamed NICs) is inserted into the failover group, the virtual disk becomes limited to Private Image Mode. This functionality is a limitation imposed by NIC teaming drivers.
• By default, Citrix Provisioning automatically switches from legacy Hyper-V NICs to synthetic NICs if both exist in the same subnet. To disable the default behavior (allowing for the
use of legacy HyperV NICS even if synthetic NICs exist), edit the target device’s registry settings:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\BNIStack\Parameters]
DisableHyperVLegacyNic"=dword:00000000

- Load balancing is not supported in the NIC failover implementation.

Update NIC drivers

From time to time, upgrade the drivers for your NICs. Follow the guidelines for upgrading NIC drivers.

Upgrade NIC drivers on target devices

To upgrade NIC drivers for target devices:

1. Go to the target device with the original hard drive from which you made the virtual disk image.
2. Set the system BIOS to boot from the hard drive.
3. Reboot the target device directly from the hard drive.
4. Uninstall the target device software from this hard drive.
5. Upgrade NIC driver as directed by the manufacturer’s instructions.
6. Reinstall the target device software on the hard drive.
7. Reimage the hard drive to make a new virtual disk image.

Note:

Do not attempt to upgrade a NIC driver on a virtual disk. Do not attempt to upgrade a NIC driver on a hard disk on which the Provisioning Server is installed. Improperly upgrading a NIC makes the hard drive unable to boot.

Upgrade NIC drivers on a provisioning server

To upgrade NIC drivers on any provisioning server, simply follow the manufacturer instructions for upgrading NIC drivers.

Install the Server component

May 15, 2019

This installation procedure is for new Citrix Provisioning implementations. For upgrade tasks, see Upgrade. The software can also be installed silently, see Running the configuration wizard silently.

Install any Windows service packs, drivers, and updates before installing the Citrix Provisioning software.
1. Click the appropriate platform-specific install option. The Citrix Provisioning Welcome window appears.

2. Click Next. The Product License Agreement appears.

3. Scroll to the end to accept the terms in the license agreement, then click Next to continue. The Customer Information dialog appears.

4. Optionally, type or select your user name and organization name in the appropriate text boxes, then click Next. The Destination Folder dialog appears.

5. Click Change. Enter the folder name or navigate to the appropriate folder where the software is installed. Or, click Next to install Citrix Provisioning to the default folder. The Setup Type dialog appears.

6. Select the appropriate radio button:
 - Complete - Installs all components and options on this computer (default).
 - Custom - Choose which components to install and where to install those components.

 Note:
 Installing the network boot services does not activate them. If you are uncertain about the need for any of these services, choose the Complete installation option.

7. Click Next.

8. If you select Complete, the Ready to Install the Program dialog appears. If you selected Custom, the Custom Setup dialog appears. This dialog provides a Feature Description text box that provides a description for the selected component in addition to the space required to install that component.
 - Expand each component icon and select how that component is to be installed.
 - After making component selections, click Next. The Ready to Install the Program dialog appears. Or, click Cancel to close the wizard without making system modifications.

9. On the Ready to Install the Program dialog, click Install to continue with the installation process. The installation takes several minutes.

10. The Installation Wizard Completed message displays in the dialog when the components and options are successfully installed.

 Note: The Installation Wizard can be rerun to install more components later, or rerun on a different computer to install select components on a separate computer.

11. Click Finish to exit the Installation Wizard. The Citrix Provisioning Configuration Wizard automatically opens.

Tip:

Although Citrix Provisioning does not require a server restart after installing the software, in some
instances, a Microsoft message appears to request a restart. When this message appears, configure the farm using the Configuration Wizard, before restarting the server. If this message appears and the server is not restarted, the removeable drive does not appear.

Adding more Citrix Provisioning servers

To add more Citrix Provisioning servers, install the software on each server that is a member of the farm. Run the Installation Wizard, then the Configuration Wizard on each server.

Tip:
The maximum length for the server name is 15 characters. Do not enter the FQDN for the server name.

When the Configuration Wizard prompts for the site to add the server to, choose an existing site or create a site.

After adding servers to the site, start the Citrix Provisioning console and connect to the farm. Verify that all sites and servers display appropriately in the Console window.

Running the configuration wizard silently

May 15, 2019

Silent product software installs

Target devices, Citrix Provisioning servers, and consoles can be silently installed to a default installation directory using the following command:

```
<Installer Name>.exe /s /v"/qn"
```

To set a different destination, use the following option:

```
<Installer Name>.exe /s /v"/qn INSTALLDIR=D:\Destination"
```

Note:
After performing a silent install of a Citrix Provisioning client, subsequent upgrades using the Upgrade Wizard fail because the client fails to reboot.
Prerequisite

Run the Configuration Wizard first on any Citrix Provisioning server in the farm used to create the provisioning database and to configure the farm.

The basic steps involved in the silent configuration of servers within the farm are:

- Create a ConfigWizard.ans file from a configured provisioning server in the farm.
- Copy the ConfigWizard.ans file onto the other servers within the farm, and modify the IP address in the ConfigWizard.ans file to match each server in the farm.
- Run the ConfigWizard.exe with the /a parameter.

To create the ConfigWizard.ans file

1. Run the ConfigWizard.exe with the /s parameter on a configured server.
2. On the Farm Configuration page, choose the Join existing farm option.
3. Continue selecting configuration settings on the remaining wizard pages, then click Finish.
4. Copy the resulting ConfigWizard.ans file from the Citrix Provisioning application data directory in \ProgramData\Citrix\Provisioning Services.

To copy and modify the ConfigWizard.ans file

1. For each server, copy the ConfigWizard.ans file to the Citrix Provisioning application data directory.
2. Edit the StreamNetworkAdapterIP= so that it matches the IP of the server being configured. If there is more than one IP being used for Citrix Provisioning on the server, add a comma between each IP address.

To run the ConfigWizard.exe silently

To configure servers, run ConfigWizard.exe with the /a parameter on each server. For a list of valid ConfigWizard parameters:

1. Run ConfigWizard.exe with the /? parameter.
2. In the Citrix Provisioning application data directory, open the resulting ConfigWizard.out file.
3. Scroll down to the bottom of the file to view all valid parameters.

To get a list of commands and their descriptions, use the / c parameter.
Install the Console component

May 15, 2019

The Citrix Provisioning console can be installed on any machine that can communicate with the Citrix Provisioning database.

The console installation includes the Boot Device Management utility.

Note:

If you are upgrading from the current product version, the console software is removed when the Citrix Provisioning server software is removed. Upgrading from earlier versions does not remove the console software automatically.

1. Run the appropriate platform-specific install option; PVS_Console.exe or PVS_Console_x64.exe.
2. Click **Next** on the **Welcome screen**. The **Product License Agreement** appears.
3. Accept the terms in the license agreement, then click **Next** to continue. The **Customer Information** dialog appears.
4. Type or select your user name and organization name in the appropriate text boxes.
5. Enable the appropriate application user radio button, then click **Next**. The **Destination Folder** dialog appears.
6. Click **Change**. Enter the folder name or navigate to the folder where the software is installed, or click **Next** to install the console to the default folder. The **Setup Type** dialog appears.
7. Select the appropriate radio button:
 - Complete - Installs all components and options on this computer (default).
 - Custom - Choose which components to install and where to install those components.
8. Click **Next**.
9. If you select **Complete**, the **Ready to Install the Program** dialog appears. If you selected **Custom**, the **Custom Setup** dialog appears. This dialog provides a **Feature Description** text box that provides a description for the selected component in addition to the space required to install that component. Expand each component icon and select how that component is to be installed. After making component selections, click **Next**. The **Ready to Install the Program** dialog appears. Or, click **Cancel** to close the wizard without making system modifications.
10. On the **Ready to Install the Program** dialog, click **Install** to continue with the installation process. The installation takes several minutes.
11. The **Installation Wizard Completed** message displays in the dialog when the components and options are successfully installed.

Note:

Rerun the Installation Wizard to install more components later, or rerun on a different computer.
to install selected components on a separate computer.

Preparing a master target device for imaging

May 15, 2019

A master target device is a device from which a hard disk image is built and stored on a virtual disk. Citrix Provisioning then streams the contents of the virtual disk created from the master target device to other target devices.

Important:

Citrix recommends that you install all Windows updates before installing a target device.

Preparing the master target device’s hard disk

The master target device is typically different from subsequent target devices because it initially contains a hard disk that is imaged to the virtual disk. If necessary, after imaging, the hard disk can be removed from the master target device.

To support a single virtual disk shared by multiple target devices, those devices must have certain similarities to ensure that the operating system has all required drivers. The three key components that must be consistent are the:

- Motherboard
- Network card, which must support PXE
- Video card

Tip:

Some platforms, physical or virtual, require a consistent hardware configuration for boot media. For example, if target devices use BDM, the master target matches the BDM configuration because end target devices use that configuration when booting.

However, the Citrix Provisioning Common Image Utility allows a single virtual disk to simultaneously support different motherboards, network cards, video cards, and other hardware devices.

If target devices share a virtual disk, the master target device serves as a template for all subsequent diskless target devices as they are added to the network. It is crucial to prepare the hard disk of the master target device correctly and to install all software on it in the correct order.

Note:

Use the following instructions after installing and configuring Citrix Provisioning and creating
target devices.

Software must be installed on the master target device in the following order:

1. Windows operating system
2. Device drivers
3. Service packs updates
4. Target device software

Applications can be installed before or after the target device software is installed. If target devices are members of a domain, and shares a virtual disk, more configuration steps must be completed.

Important:

Dual boot virtual disk images are not supported.

Configuring a master target device’s BIOS

Use the following steps to configure the target device system's BIOS and the BIOS extension, provided by the network adapter, to boot from the network. Different systems have different BIOS setup interfaces. If necessary, consult the documentation that came with your system for further information on configuring these options.

1. If the target device BIOS has not yet been configured, reboot the target device and enter the system’s BIOS setup. To get to BIOS setup, press the F1, F2, F10 or the **Delete** key during the boot process. The key varies by manufacturer.
2. Set the network adapter to **On** with PXE.

 Note:

 Depending on the system vendor, this setting appears differently.

3. Configure the target device to boot from LAN or Network first. Optionally, select the **Universal Network Driver Interface**; UNDI first, if using a NIC with Managed Boot Agent (MBA) support.

 Note:

 On some older systems, the BIOS setup program included an option that permitted you to enable or disable disk-boot sector write protection. Ensure that the option is disabled before continuing.

4. Save the changes, then exit the BIOS setup program.

5. Boot the target device from its hard drive over the network to attach the virtual disk to the target device.
Configuring network adapter BIOS

This procedure is only necessary for older systems.

1. Reboot the master target device.

2. Configure the network adapter’s BIOS extension through setup.

 During the system boot, the network adapter’s BIOS extension presents an initialization message similar to the following: Initializing Intel® Boot Agent Version 3.0.03 PXE 2.0 Build 078 (WFM 2.0) RPL v2.43

 Enter the network adapter’s BIOS extension. The key combination for entering the network adapter’s BIOS extension varies by manufacturer. For example, to enter the Intel Boot Agent setup screen, type Ctrl+S. Consult the network adapter’s documentation for more information.

 A screen similar to the following appears:

 ![Intel Boot Agent Setup Menu](image)

3. Change the boot order to **Network first**, then **local drives**.

4. Save any changes, and exit the setup program. In the Intel Boot Agent, typing F4 saves the changes.

 Alternatively, a device can be configured to provide IP and boot information (boot file) to target devices using the Manage Boot Devices utility.

Installing the master target device software

Note:

Before installing the software on a master target device, clear any BIOS-based-virus protection features. To include antivirus software on the virtual disk image, be sure to turn the antivirus software back on before running the Imaging Wizard.

Install and configure the Microsoft NIC teaming driver, introduced in Windows Server 2012, or OEM NIC teaming software before installing target device software.
Citrix Provisioning target device software components comprise:

- **Citrix Provisioning Virtual Disk**: the virtual media used to store the disk components of the operating system and applications.
- **Citrix Provisioning Network Stack**: a proprietary filter driver that is loaded over the NIC driver, allowing communication between the target devices and the Provisioning Server.
- **Citrix Provisioning SCSI Miniport Virtual Adapter**: the driver that allows the virtual disk to be mounted to the operating system on the target device.
- **Citrix Provisioning Imaging Wizard**: used to create the virtual disk file and image the Master Target Device.
- **Virtual Disk Status Tray Utility**: used to provide general virtual disk status and statistical information. This utility includes a help system.
- **Target Device Optimizer Utility**: used to change target device setting to improve performance.

Citrix Provisioning target device software is available for 32-bit and 64-bit Windows operating systems.

Note:
When installing Citrix Provisioning target device software on NT6.x systems within a multi-NIC environment, all available NICs can be used. Therefore bindcfg.exe is no longer required and no longer installed with target device software.

Installing Citrix Provisioning target device software on a Windows device

1. Boot the master target device from the local hard disk.
2. Verify that all applications on the device are closed.
3. Double-click on the appropriate installer. The product installation window appears.
4. On the **Welcome** dialog that displays, click **Next**, scroll down to the end, then accept the terms of the license agreement.
5. Click **Next** to continue. The **Customer Information** dialog appears.
6. Type your user name and organization name in the appropriate text boxes.
7. Select the appropriate install user option. The selected option depends on whether this application is shared by users on this computer, or whether only the user associated with this computer accesses it.
8. Click **Next**. The **Destination Folder** dialog appears.
9. Click **Next** to install the target device to the default folder, `C:\Program Files\Citrix\Citrix Provisioning`. Optionally, click **Change**, enter the folder name or navigate to the appropriate folder, and then click **Next**, then click **Install**. The installation status information displays in the dialog.
10. **The Installation Wizard Completed** message displays in the dialog when the components and options have successfully been installed. Close the **Wizard** window. If .NET 4.5 or newer is installed and Windows Automount is enabled, the Imaging Wizard starts automatically by default. For details, see [Using the Image Wizard to Create a New Disk](#).

11. Reboot the device after successfully installing product software and building the virtual disk image.

Using the Imaging Wizard to create a virtual disk

May 15, 2019

Use the Imaging Wizard to automatically create the base virtual disk image from a master target device.

Prerequisites

Windows NT 6.x:

The Citrix Provisioning Imaging Wizard provides a block-based cloning solution along with the Volume Shadow Copy Service (VSS).

- Each local disk partition is cloned separately to the virtual disk. If there is a separate System Reserved partition on the local disk, it must be included as a source partition.
- Each destination partition must be equal to or larger than the source partition, regardless of the amount of available free space in the source partition.
 - If a larger destination partition is needed, after imaging completes, use Windows disk management “Extend Volume…”
 - If a smaller destination partition is needed, before imaging, the source partition can be resized using Windows disk management “Shrink Volume…”
Tip:
If a Windows reboot request message displays before the imaging process completes, ignore the request until imaging completes successfully.

Imaging

The Imaging Wizard prompts for information for connecting to the farm. It includes information necessary to set the appropriate credentials/Active Directory and licensing information to apply to this particular virtual disk.

1. From the master target device’s Windows Start menu, select Citrix>Citrix Provisioning > Imaging Wizard. The Wizard’s Welcome page appears.
2. Click Next. The Connect to Farm page appears.
3. Enter the name or IP address of a Citrix Provisioning server within the farm. Include the port used to make that connection.
4. Use the Windows credentials (default), or enter different credentials, then click Next. If using Active Directory, enter the appropriate password information.
5. On the Microsoft Volume Licensing page, select the volume license option to use for target devices. Or, alternately select None if volume licensing is not being used.
6. Select to create a virtual disk (default), or use an existing virtual disk by entering that virtual disk’s name, then click Next.
7. If the Create virtual disk option was selected, the New vDisk dialog displays:
 a) Enter a name for the virtual disk.
 b) Select the Store where this virtual disk resides.
 c) Select the vDisk format from the appropriate menus. If the VHDX format is Dynamic, from the VHDX block size menu, select the block size as either 2 MB or 16 MB.
 d) Click Next, then define volume sizes on the Configure Image Volumes page.
8. Click Next. The Add Target Device page appears.
9. Select the target device name. Include the MAC address associated with one of the NICs that was selected when the target device software was installed on the master target device. Also include the collection to add this device to. Click Next. If the target device is already a member of the farm, the Existing Target Devices page appears.
10. Click Next. A Summary of Farm Changes appears.
11. Optionally (unless the virtual disk is used to boot the VMs) select to optimize the virtual disk for use with Citrix Provisioning.
12. Verify all changes, then click Finish. A confirmation message displays.
13. Click Yes on the confirmation message to start the imaging process.
Citrix Provisioning supports upgrading to the latest product version from versions starting with 7.6 LTSR.

Important:

When upgrading from Citrix Provisioning 1808, you must uninstall Citrix Provisioning server 1808 before installing the new Citrix Provisioning server.

If you are upgrading from Provisioning Services 7.17 to this version of Citrix Provisioning, you must manually uninstall CDF on the provisioning server, console, and target devices.

Before attempting to upgrade a Citrix Provisioning farm:

- Select a maintenance window that has the least amount of traffic
- Back up the Citrix Provisioning database
- Back up all virtual disks

Tip:

Mirror if you are in a high-availability scenario; for more information, see Database mirroring. No special action is required during the upgrade once mirroring is set up.

When upgrading Citrix Provisioning, consider the following:

- Upgrade to the latest licensing server. Note the following when upgrading the license server:
 - License servers are backward compatible and provide the latest security fixes.
 - If necessary, upgrade individual licenses. New features require that the Citrix license has a minimum subscription advantage (SA) date.
- Back up the Citrix Provisioning database. While Citrix always tests to ensure a successful database upgrade, unforeseen circumstances might arise. Citrix strongly recommends backing up the database before upgrading.
- Back up the Citrix Provisioning virtual disk. Citrix recommends backing up the virtual disk before upgrading. This process is only necessary if you plan to use reverse imaging with private images.
- When running the installer to update either the server or console components, if an older version of Citrix Provisioning is detected both components are automatically updated.
- If you are upgrading from version 7.17 to this Citrix Provisioning 1903, you must manually uninstall CDF on the provisioning server, console, and target devices.
- Files located in C:\Program Files\Citrix\PowerShell SDK might be missing after upgrading. This issue occurs because the CDF version used by Citrix Provisioning does not match the version used by other components associated with Citrix Virtual Apps and Desktops. As a result, newer
CDF files have a lower version number than previous ones. This issue does not affect the functionality of importing CPV device collections into CVAD machine catalogs. To resolve this issue:

2. Mount the new Citrix Virtual Apps and Desktops ISO.
3. In the mounted ISO, navigate to \x64\DesktopStudio.
4. Right click PVS PowerShell SDK x64 to expose a contextual menu.
5. Select Repair.
6. Run the Repair option. The installation adds the two CDF files as needed.

Upgrade the environment

To upgrade from a previous Citrix Provisioning farm, complete the following procedures:

1. Upgrade consoles. The console is a separate executable that can be installed on upgraded servers (PVS_Console.exe or PVS_Console_64.exe). Citrix recommends upgrading the console, followed by the server software for each provisioning server in the farm. Remote consoles can be upgraded at any time.
2. Upgrade the first provisioning server in the farm, which upgrades the Citrix Provisioning database.
3. Upgrade the remaining provisioning servers within the farm.
4. Upgrade vDisks.

Important:

When upgrading a virtual disk within a Citrix Virtual Apps and Desktops deployment, upgrade the master target device software before upgrading the VDA software.

Upgrade utilities

The Upgrade Wizard includes the following utilities:

- The UpgradeAgent.exe runs on the target device to upgrade previously installed product software.
- The UpgradeManager.exe runs on the provisioning server to control the upgrade process on the target device.

Upgrading at a glance

The information in this section provides step-by-step guidance for upgrading Citrix Provisioning components. For server upgrade information, see the server article. For information about upgrading vDisks, see vDisks.
Important:
When upgrading from Citrix Provisioning 1808, you must uninstall Citrix Provisioning server 1808 before installing the new Citrix Provisioning server.

Upgrade the console and server

Follow these steps to upgrade the console and server:

1. Run the console and server executables to initiate the upgrade process automatically. Citrix recommends that you upgrade the console first, followed by the server.

 Tip:
 To keep the Citrix Provisioning farm and target devices running during the upgrade process, use the rolling server upgrade procedure. This process upgrades one Provisioning Server at a time.

2. The rolling server upgrade performs an upgrade on one server at a time.

 Note:
 While upgrading the Provisioning Server, it cannot service any target device. Ensure that the remaining servers in the farm support the target devices (clients) during the failover process while upgrading the server.

To perform the rolling upgrade, update the first Provisioning Server in the farm:

a. Open the services MSC file (services.msc) and halt the Citrix PVS Stream Service. This process causes all provisioning targets connected to this server to fail over to other servers in the farm. Once finished, upgrade the Provisioning Server and console components.

b. Upgrade the Citrix Provisioning database. This process is only done once:
 - Use dbScript.exe to generate the SQL script. Choose the option to upgrade database and enter the name of the dB. Use that script in SQL Management or SQL command line to upgrade the provisioning database.
 - Use configuration wizard to upgrade the provisioning database; when using this method, consider:
 - The Citrix Provisioning Configuration Wizard automatically starts when the Finish button is selected after successfully upgrading the Provisioning Server.
 - Use the default settings so that the Citrix Provisioning Configuration Wizard uses the previously configured settings. On the Farm Configuration page, select the option Farm is already configured. After all configuration information is entered, review the information on the Finish page; click Finish to begin configuring the provisioning server. At this
point, the provisioning database is not configured. A message appears indicating that the database was upgraded. Click **OK** to confirm the message and upgrade the database.

- Verify that Citrix Provisioning processes have started using `services.msc`. Boot a target device to confirm that it can connect to the provisioning server.

Considerations for provisioning database migration using a different SQL server

The Provisioning Console could fail to display the virtual disk attached to a site when migrating a database to a different SQL server. This condition exists when you use the configuration wizard to point to a different SQL server. Despite the console view, the database `dbo.disk` displays the updated virtual disk entries.

To migrate a database:

1. Back up the database.
2. Restore the database on the new SQL server.
3. Run the configuration wizard and retain the default settings on all pages except the database configuration pages.
4. On the **Farm Configuration** page, select **Join existing farm**.
5. On the **Database Server** page, select the new database server and instance names. On the **Farm Configuration** page, the default option is the database imported into the new SQL server.
6. In the configuration wizard, choose the defaults for all other options presented by the wizard.

Important:

During the migration to a different SQL server, do not create a site/store. In the preceding sequence, steps 4 and 5 point to the new SQL server, instance, and database.

Upgrade remaining Provisioning servers

After upgrading the first provisioning server, upgrade the remaining servers in the farm:

1. Open the services MSC file (`services.msc`) and halt the **Citrix Provisioning Stream Service**. This process causes all provisioning targets connected to this provisioning server to fail over to other provisioning servers in the farm. Once finished, upgrade the **provisioning server** and console components.

Tip:

Once the server is successfully upgraded, the Citrix Provisioning Configuration Wizard starts automatically after clicking **Finish**. The provisioning database is only updated after upgrading the first provisioning server.
2. Use the default settings. The Citrix Provisioning Configuration Wizard uses the previously configured settings. On the Farm Configuration page, make sure that the option Farm is already configured is selected. After all configuration information is entered, review the information on the Finish page; click Finish to being configuring the provisioning server.

3. Repeat these steps to finish upgrading all remaining provisioning servers in the farm.

Rebalance Citrix Provisioning clients

After upgrading and configuring all Citrix Provisioning servers, Citrix recommends that you rebalance all provisioning clients (target devices) within the farm. To rebalance provisioning clients:

1. Start the Citrix Provisioning console and log into the farm.
2. Navigate to the Servers tab.
3. Highlight all the provisioning servers that were recently upgraded, right-click to expose a contextual menu.
4. Select Rebalance clients.

Upgrade the Citrix Provisioning target device

Citrix Provisioning supports three methods for upgrading target devices:

- In-place upgrade
- Direct VHD\VHDX boot
- Manual upgrade using reverse imaging

Important:

Citrix strongly recommends backing up the virtual disk if versioning is not used in the upgrade process.

When using Citrix Provisioning target installers:

- If the system is running Provisioning Services version 7.6.2 (7.6 CU1) or a newer target device, run the new target installer. It must be the same version installed on the target device. This process effectively allows the installer to take care of the upgrade.
- If the system is running Provisioning Services version 7.6.0 or earlier target devices, uninstall the old target device software. Reboot, then install the new Citrix Provisioning target device version.

In-place upgrades

For in-place upgrades, a maintenance version of the virtual disk is interchangeable with the private image. However, Citrix recommends that you take advantage of Citrix Provisioning versioning to per-
form an in-place upgrade.

To perform an in-place upgrade:

1. Create a maintenance version of the virtual disk.
2. Using the provisioning console, navigate to the device's properties and set the device type to Maintenance.
3. In the Boot menu, select option 1 to boot a client into virtual disk mode using the maintenance version.
4. Log into Windows and run the new target device installer. Install the software and perform a full installation. The target device installer performs the upgrade; do not run the imaging wizard. Reboot the target device when prompted.
5. Once Windows has loaded, log into the system and verify that the target device software is the expected version by viewing the status tray. If the status tray is hidden by Windows, locate it by clicking the up arrow on the status tray icon.
6. Shut down the target device.
7. If versioning is invoked, use the provisioning console to promote the maintenance version to test version functionality. Verify the new version and promote it to the production version when it is deemed production quality. Roll this version out to users by rebooting all the target devices using this virtual disk.

Upgrading using VHD\VHDX boot

When using method to upgrade a target device, consider:

- Citrix Hypervisor only supports .vhd
- Hyper-V 2012 and 2008 R2 only support .vhd
- Hyper-V 2012 R2 and 2016 supports both .vhd and .vhdx

1. Obtain the .vhdx file. Consider:
 - If the virtual disk does not have a version, copy the .vhdx file to the Hyper-V server or import the file to XenServer using XenCenter (Files > Import).
 - If the virtual disk has a version, perform a base merge and create a .vhdx file in maintenance mode.

2. Perform a direct VHD boot using XenServer:
 a. Copy the .vhd file to a system running XenCenter and import the file to XenServer using Files > Import.
 b. Create a VM using the imported .vhd file. Refer to the Importing and Exporting VMs section of the Citrix Virtual Apps and Desktops documentation for more information.
 c. Boot the VM.
d. Upgrade the target device software. See the information at the beginning of this section for using the Citrix Provisioning target device installers.

3. Perform a direct VHD\VHDX boot using Hyper-V:
 a) Copy the .vhd file to the Hyper-V server, or
 b) Create a Hyper-V VM using the “Use an existing virtual hard disk” and point to the .vhd file. Refer the following links for creating VMs in Hyper-V. For Hyper-V 2012 R2 and 2016, ensure that the generated VM matches those VMs of the virtual disk:
 • Generation 1 = traditional BIOS VMs and systems
 • Generation 2 = UEFI VMs and systems

 For Hyper-V 2016 environments:
 https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/create-a-virtual-machine-in-hyper-v

 For Hyper-V 2012 and 2012 R2:

 For Hyper-V 2008 R2 and 2008 R2 Sp1:

 c) Boot the VM.
 d) Upgrade the target device software. Upgrade the target device software. See the information at the beginning of this section for using the Citrix Provisioning target device installers.

4. Copy the .vhd file back to the virtual disk store location where it was originally located:
 • If the .vhd file is taken from a based merge version, the file is ready for testing and verification.
 • If the file is copied from the base virtual disk, import the virtual disk into the provisioning database using the Add or import Existing vDisk option. Run this option from the virtual disk Pool\Store level in the provisioning console.

Upgrading using manual reverse imaging with P2PVS

Use the information in this section to upgrade Citrix Provisioning using reverse imaging with P2PVS.
The following table illustrates supported upgrade methods:

<table>
<thead>
<tr>
<th>Reverse imaging method</th>
<th>Xen tools</th>
<th>VM tools</th>
<th>Hyper-V compatibility</th>
<th>NIC driver</th>
<th>Windows 10 upgrade</th>
<th>Antivirus updates</th>
<th>Firewall/Network security software</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2PVS reverse imaging</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VHD boot from hypervisor</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Direct VHD boot</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Boot the Citrix Provisioning target device into the virtual disk using private\maintenance mode.

2. Install PVS_UpgradeWizard.exe or PVS_UpgradeWizard_x64.exe from the Upgrade folder of the ISO image. This folder is located in the latest Citrix Provisioning release area (containing the latest P2PVS.exe file). The upgrade wizard can also be installed through the Citrix Provisioning meta-installer using the Target Device Installation > Install Upgrade Wizard option.

3. Run P2PVS.exe from the Citrix Provisioning upgrade wizard directory. By default, this file is located in C:\Program Files\Citrix\Citrix Provisioning Upgrade Wizard.
4. Click the From drop-down menu to choose the Citrix Provisioning virtual disk. Click Next.

5. In the partition screen, select the partitions undergoing reverse imaging. All system partitions, regardless of whether they have a drive letter or not, are used in reverse imaging. Click Next.

6. Click Convert on the final page to begin reverse imaging.

Note:
When using reverse imaging, consider:

- reverse imaging for BIOS systems is non-destructive. The partition table of the system is not altered. Because Citrix Provisioning imaging is blocked base, the partition table of the local hard disk must be the same as those of the virtual disk.
- reverse imaging for UEFI systems is destructive. All partitions on the local hard disk are destroyed and re-created to match those of the virtual disk.

7. Once reverse imaging finishes, reboot the VM from hard disk without network booting.

8. Upgrade the target device. Refer to the information at the beginning of this section for more information.

9. Image the OS to virtual disk again. You can accomplish this imaging by creating a virtual disk or using the existing one.

Using reverse imaging to upgrade Windows 10 machines

To upgrade a Windows 10 image using reverse imaging:

1. Create a target device with a virtual hard disk that is the same size or bigger than the virtual disk.

2. Network boot (PXE/ISO) the VM into the virtual disk using maintenance version or private image mode.

3. If the virtual disk is using Provisioning Services 7.15 or older, install PVS_UpgradeWizard.exe or PVS_UpgradeWizard\x64.exe from the Upgrade folder of the ISO image. This process retrieves the latest P2PVS.exe file. The upgrade wizard can also be installed with the Citrix Provisionings meta-installer using the Target Device Installation > Install Upgrade Wizard option.

4. Run P2PVS.exe from the Citrix Provisioning target device\Upgrade Wizard directory. By default, this directory is C:\Program Files\Citrix\Citrix Provisioning, or C:\Program Files\Citrix\Citrix Provisioning Upgrade Wizard, respectively.

5. Click the From drop-down menu and choose Citrix Provisioning vDisk and click Next.

6. In the partition screen, select the partitions for reverse imaging. All system partitions, regardless of whether they have a drive letter or not, are used in reverse imaging. Click Next.

7. Click Convert on the last page to begin reverse imaging.
8. Once reverse imaging has completed successfully, set the VM to boot from HDD and reboot the VM.

9. Uninstall the Citrix Provisioning target device.

10. Shut down the VM.

 Note:
 The amount of free space in the c:\ partition. Some used space can be freed up by deleting the Windows.old folder in C:. Refer to the Windows Support page for more information.

11. Judging by the free space on the C:\ partition, increase the size of the VM’s hard disk if needed.

 Note:
 If this operating system is Windows 10 1607 (code name Redstone 1 or Anniversary Update), Windows 10 update will create another system partition after the C:\ partition. Currently, it is not possible to increase the size of C:\ partition.

12. Boot the VM. Please note the local admin of the VM and remember the local admin password.

14. Use local admin credentials to log in since the Windows 10 upgrade process can impact active directory.

15. Rejoin the VM to active directory if needed.

16. Install new drivers and more Windows updates if needed.

17. Once updates are done, install Citrix Provisioning target device software.

18. Use the Imaging Wizard or P2PVS to create a virtual disk. The old virtual disk can be used if the size of the VM’s virtual hard disk has not been increased in step 11.

Servers

May 24, 2019

In a Citrix Provisioning farm, the database is upgraded at the same time that the first provisioning server is upgraded. After upgrading the database and the first server in the farm, you can upgrade the remaining servers within it. When configuring servers, consider the following:

- While the first provisioning server is being upgraded, some administrative features are not available.
- Citrix recommends closing all Citrix Provisioning consoles until the upgrade is complete to avoid failed operations.
• When upgrading a server, the console component is also upgraded.

Note:
Install the Upgrade Wizard in a folder that does not contain surrogate pair characters. That is, the unicode code point after 0x10000.

Upgrading the first provisioning server

Important:
Uninstall Citrix Provisioning server version 1808 before installing version 1811.

To upgrade:
1. To upgrade the server and database, run the new version of the server software on the server, then select the **Automatically close and attempt to restart applications** option. If this option is not selected and a **File in use** screen displays, select the **Do not close applications** option.
2. Install the Citrix Provisioning console component on this server or on a server used to manage the farm. For details on installing the console, see the article Installing Citrix Provisioning server software.
3. In the **Configuration Wizard**, select the option to join a farm that is already configured. Running the wizard starts the services. For details, see the instructions on how to join an existing farm in **Configuration Wizard Tasks**.

Upgrading remaining Citrix Provisioning servers in the farm

Once you finish upgrading the first server in the farm, use the same procedure to upgrade the remaining servers.

Tip:
The database upgrade is ignored because it was addressed when the first server was upgraded.

Rolling server upgrade

To keep Citrix Provisioning components running during an upgrade, use the rolling server upgrade process. This process upgrades one provisioning server at a time.

Tip:
When upgrading a provisioning server, it cannot service any target device. Due to this constraint, ensure that the remaining provisioning servers in the environment support client failover from the upgraded server.
To perform the rolling server upgrade, update the first provisioning server in the farm:

1. Open the Services snap-in, `services.msc`, in the MMC and halt the Citrix Provisioning Stream Service. This process causes all targets connected to this provisioning server to fail over to other servers in the farm. Once finished, upgrade the provisioning server and console components.

2. Upgrade the Citrix Provisioning database. This process is done one time. There are two ways to upgrade the database:

a. Use `dbScript.exe` to generate a SQL script. Select the option to upgrade the database and enter the name associated with it. Then use the script in SQL Management or the SQL command line to upgrade the provisioning database.

b. Use the configuration wizard to upgrade the provisioning database. Consider the following:

The Citrix Provisioning configuration wizard automatically starts when the **Finish** button is selected once the provisioning server has been successfully upgraded.

Use the default settings. These settings ensure that the configuration wizard retains the settings from the previous instance. On the **Farm Configuration** page, use the option **Farm is already configured**. After collecting and reviewing all configuration information click **Finish** to begin configuring the provisioning server. If the provisioning database has not been upgraded, a message appears indicating that the database is upgraded. Click **OK**.

Verify that Citrix Provisioning is running using the `services.msc` snap-in and boot a target device to confirm it can connect to the provisioning server.

After upgrading the first provisioning server in the farm, upgrade all other servers:

3. Open the Services snap-in, `services.msc`, in the MMC and stop the Citrix Provisioning Stream Service. This process causes most, if not all, of the target devices connected to this provisioning server to fail over to the server that has been upgraded. Run the new server and console executables to upgrade the server and console components.

4. The configuration wizard automatically starts after clicking **Finish** once the provisioning server has been successfully upgraded.

Note:

The first provisioning server updates the provisioning database.

5. Use the default settings. These settings ensure that the configuration wizard retains the settings from the previous instance. On the **Farm Configuration** page, ensure that the option **Farm is already configured** is selected. After all configuration information is collected, review the information on the Finish page and click **Finish** to begin configuring the provisioning server.

6. Repeat steps 3–5 to upgrade all other provisioning servers in the farm after upgrading the first server.
Virtual disks

May 24, 2019

Important:
Back up all virtual disks before upgrading to a newer product version.

Upgrading virtual disks involves installing the new version of the Citrix Provisioning target device software on the virtual disk image.

Important:
If you are upgrading from Provisioning Services 7.6.1 or later, you can do an *in-place upgrade*. Citrix recommends that you use this method if possible. Uninstall if you are using version 7.6.0 or earlier when using the in-place upgrade method.

In-place upgrade

It involves two steps:

1. Start the client in private or maintenance mode.
2. Run the target device installer as described in *Preparing a master target device for imaging*.

Note:
Upgrading Citrix Provisioning requires local administrator privileges.

Upgrading from earlier versions

If you have to upgrade from versions earlier than 7.6.1, the following virtual disk upgrade methods are supported:

- Upgrading vDisks using Hyper-V. If you are upgrading from Citrix Provisioning 6.x to 7.1 or 7.6, this inline upgrade method is recommended. It is faster than reimaging, and uses the least amount of storage.
- Upgrading vDisks by reimaging. If neither of the other two methods of upgrading vDisks are viable in your implementation, select from one of the following reimaging upgrade methods:

 - **Versioned vDisk Upgrade:** If upgrading vDisks from Citrix Provisioning 6.x to 7.1 or 7.6, use this virtual disk upgrade method if the Upgrading vDisks using Hyper-V method cannot be used. This method reimages to a maintenance version of the virtual disk, allowing production devices to continue running and booting from the production version of the virtual disk. After the upgraded version of the virtual disk is promoted to production, target devices will boot or reboot from the upgraded virtual disk version.
Automated Inline Upgrade: If you are upgrading vDisks from Citrix Provisioning 5.1.x, 5.6.x, or 6.x to 7.1 or 7.6, use this method. This method is only applicable if you cannot upgrade vDisks using Hyper-V, or if versioned virtual disk upgrade methods cannot be used. This method uses the Upgrade Wizard and Upgrade Manager to automate some of the steps included in the Manual virtual disk Upgrade method.

Manual vDisk Upgrade: If you are upgrading from 5.1.x, 5.6.x, or 6.x to 7.1 or 7.6, use this virtual disk upgrade method. Use the manual method if the Hyper-V or versioned virtual disk upgrade methods cannot be used. Or, the Automated Inline Upgrade method fails. This method can also be used if multiple partitions exist on the virtual disk and the same system and machine are available for reimaging. The hard disk drive does not need to be the same.

Upgrade a virtual disk using Hyper-V

If you are upgrading from Provisioning Services 6.x to 7.1 or 7.6, this inline upgrade method is recommended. It is faster than reimaging, and uses the least amount of storage.

Before upgrading using Microsoft Hyper-V, review the following requirements:

- General Hyper-V knowledge.
- Hyper-V must be installed. Hyper-V is not required on the Citrix Provisioning server.

Note:

Hyper-V upgrade does not support vDisks using 16 MB block size. When creating virtual disk images, the block size is 2 MB or greater.

1. On a Hyper-V server, uninstall previously installed Provisioning Services software.
2. Install the newer version of Citrix Provisioning software.
3. Copy a newly created Virtual Hard Drive (VHDX) file to the Hyper-V server:
 a) Create a version of the virtual disk.
 b) Promote the new version to test mode.
 c) Perform a merge base to test mode.
 d) Copy the VHDX from step c to the Hyper-V server
4. Create a new virtual machine in the Hyper-V Manager.
5. During the creation steps, attach the existing newvDisk.vhdx instead of using a new VHDX.
6. Go into the properties of the newly created Hyper-V virtual machine (Action panel > Settings) and remove the network adapter. Go to Add Hardware and add the Legacy NIC.
7. Go to the legacy NIC and attach it to the physical system’s NIC.
8. Boot the virtual machine.
9. Let the system install the new drivers, then reboot if prompted.
10. Uninstall Citrix Provisioning target device software, then reboot.
11. Optional: Install Hyper-V’s Integration Services. These services are only necessary when the resulting VHDX must be bootable in both physical and virtual systems. While the virtual machine is on, go to **Action**, then choose **Insert Integration Services set up disk**, then install.

12. Install the Citrix Provisioning target device software.

13. Choose to bind Citrix Provisioning to the inactive NIC, the physical NIC from the original target device. When installing target device software on NT6.x systems within a multi-NIC environment, all available NICs can be used. Therefore **bindcfg.exe** is no longer required and no longer installed with the target device software.

14. Shut down the virtual machine.

15. Go to the virtual machine’s properties, **Action panel > Settings**, then set it to boot to the legacy NIC first.

16. Transfer the VHDX, *newvDisk.vhdx*, back to the provisioning server.

17. From the Citrix Provisioning console:
 a) Add the VHDX to the Citrix Provisioning database using the **Add existing vDisk** menu option.
 b) Add the Hyper-V virtual machine to the list of the target devices.
 c) Associate the virtual disk with the appropriate target devices.
 d) Set the virtual disk to **Standard Image Mode**.

18. Boot the physical target device, then the Hyper-V virtual machine.

The original virtual disk is now upgraded and a common image for the physical and virtual machines has also been created.

Upgrade a virtual disk using reverse imaging

Upgrade by reimaging only if neither of the other two methods of upgrading vDisks is viable in your implementation.

The reimaging upgrade method that you choose depends on your existing Citrix Provisioning implementation and network requirements.

Versioned virtual disk upgrade

This virtual disk upgrade method can be selected when upgrading vDisks from 6.x to the latest version of the target device software. This method reimages to a maintenance version of the virtual disk, allowing production devices to continue running and booting from the production version of the virtual disk. After the upgraded version of the virtual disk is promoted to production, target devices will boot or reboot from the upgraded virtual disk version.

Upgrade prerequisites include:

- Upgrading all Citrix Provisioning servers

© 1999-2019 Citrix Systems, Inc. All rights reserved.
To upgrade, complete the following procedure:

1. Boot the Maintenance device from the managed virtual disk while in **Maintenance mode**.
2. From the product installation directory, run `P2PVS.exe` to reverse image using volume-to-volume imaging. Select the virtual disk as the source and the hard disk drive (HDD) as the destination. If your destination partition is on any partition other than partition 1, you must edit the `boot.ini` or `bcedit` partition settings before rebooting from the HDD.
3. Reboot the Maintenance device from the HDD. Do not PXE boot.
4. On the maintenance device, uninstall 6.x target device software, and then install the latest version of the target device software.
5. Run the Citrix Provisioning Imaging Wizard to create a virtual disk image. Create the target device if it does not exist, and assign the virtual disk to the target device.
6. Test streaming the new virtual disk image by booting a maintenance or test device from the upgraded virtual disk.

Manual reverse imaging using P2PVS

When manually performing reverse imaging using P2PVS, consider the following:

- Boot the provisioning target device into the virtual disk using private\maintenance mode.
- Install `PVS_UpgradeWizard.exe` or `PVS_UpgradeWizard_x64.exe` from the **Upgrade** folder of the ISO image to get the latest `P2PVS.exe`. The upgrade wizard can also be installed with the Citrix Provisioning meta-installer using the Target Device Installation > Install Upgrade Wizard option.
- Run `P2PVS.exe` from the Citrix Provisioning Upgrade Wizard directory. By default, this directory is `C:\Program Files\Citrix\Citrix Provisioning Upgrade Wizard`.
- Click the **From** menu and choose **Provisioning Services vDisk** and click **Next**.
- In the partition screen, select the partitions. All system partitions, regardless of whether they have a drive letter or not, are used in reverse imaging. Click **Next**.
- Click **Convert** on the last page to begin reverse imaging.

Note:

Reverse imaging for BIOS systems is non-destructive. The partition table of the system is not altered. Because Citrix Provisioning imaging is blocked base, the partition table of the local hard disk must be the same as the partition table of the virtual disk.

Important:
Reverse imaging for UEFI systems is destructive. All partitions on the local hard disk are destroyed and re-created to match the partitions of the virtual disk.

About reverse imaging on UEFI VMs

Use reverse imaging to update antivirus and malware definitions. UEFI cannot perform this task as BIOS can perform it.

When reverse imaging UEFI VMs, consider the following:

- Reverse imaging UEFI VMs can only be done manually using P2PVS.exe, using either:
 - GUI
 - Command line

Important:

When using reverse imaging on UEFI VMs, consider that the process is destructive, all data is lost as a result.

Automated inline upgrade

Use the **Automated vDisk Upgrade** method when upgrading from 5.1.x, 5.6.x, or 6.0–6.1. Also use this method when you cannot use and the Hyper-V upgrade. This upgrade method takes an existing virtual disk and converts it to the current product version using the Upgrade Wizard and Upgrade Manager.

Prerequisites:

- All Citrix Provisioning consoles have been upgraded.
- All Citrix Provisioning servers have been upgraded.
- A copy of the virtual disk has been created before upgrading.

Automated Inline virtual disk upgrades require that the virtual disk is offline to target devices until the virtual disk upgrade completes. To avoid vDisks being offline, create a clone of the virtual disk and use it for the upgrade process. Then, after the upgrade completes, target devices can be migrated to the upgraded virtual disk.

1. On the master target device or maintenance device, depending on the target device platform, run either `PVS_UpgradeWizard.exe` or `PVS_UpgradeWizard_x64.exe`.
2. Copy the file `UpgradedManager61.exe` from the Provisioning Services 6.1 target device product installation directory into the installation directory of the provisioning server. The default product installation directory is `C:\Program Files\Citrix\Citrix Provisioning`.
3. On the provisioning server, run `UpgradedManager61.exe`.
4. On the master target device, run `UpgradeConfig.exe` from the **Windows Start** menu shortcut or from the product installation directory:
a) Specify a local account with an administrator privilege to automatically log on. This local account cannot have an empty password.

b) Specify a local partition to which reverse imaging clones data. The original hard drive that the virtual disk was cloned from is recommended. **Note:** If the partition is a new hard drive, use the manual upgrade method to initialize the hard drive.

c) Specify the Provisioning Server IP address and a user account and password to connect to Upgrade Manager. This account cannot have an empty password.

d) Click **OK**.

e) Upgrade Config checks various parameters. If everything passes, the Upgrade Config exits, and then reboots the machine to start the upgrade script.

f) The machine reboots several times, and then displays a message to indicate that the script has successfully completed.

Note:

Auto Logon clears when the upgrade completes. If you are using Auto Logon for the virtual disk deployment, setup Auto Logon as necessary.

Upgrading vDisks manually

Use the manual upgrade as a universal approach to upgrading vDisks, or if any of the following are true:

- The virtual disk has gone through several modifications in private image mode.
- The original hard drive is no longer available.

The manual upgrade method includes completing the following tasks:

1. Image the virtual disk back to the master target device's hard drive.
2. Install the latest product software on the master target device.
3. Image the target device's hard drive onto the virtual disk file.
4. Boot from the virtual disk.

Image back to a master target device's hard drive

There are two procedures that allow you to image a virtual disk back to a hard drive. The procedure you select depends on the state of the disk drive you are imaging to. You can image back to the original hard drive from which the virtual disk was created. Returning the image to the original hard drive is the recommended method. Alternatively, you can image back using an unformatted, uninitialized hard disk drive.
Image back to the original hard drive from which the virtual disk was created

1. Boot from the virtual disk in private or shared image Mode.
3. In the tree, under Storage, select Disk Management.
4. Note the partition letter of the active partition of the original hard disk. If new, format the disk before continuing.
5. Run the Image Builder utility on the target device. This utility is at \Program Files\Citrix\Citrix Provisioning\P2PVS.exe.
6. Specify the drive letter of the newly created partition, or the original boot HDD partition, as the Destination Drive. The destination drive points to the virtual disk first partition by default.
7. Proceed cloning the hard drive image to the virtual disk destination drive.
8. To connect the virtual disk to the provisioning server, from the console, set the target device to boot from the hard drive, then PXE boot the target device. If this step is not completed properly, the provisioning server is unable to connect with the virtual disk.
9. Uninstall the product software. For details, see the section about removing Citrix Provisioning.

Image back using an unformatted, uninitialized hard disk drive

1. Boot from the virtual disk in Private Image Mode.
3. In the tree, under Storage, select Disk Management.
4. Create a new primary partition, as the first partition, assign a drive letter to it, and then format the partition.
5. Right-click on the newly created partition, then choose Mark Partition as Active.
6. Delete the boot.ini.hdisk file from the root of the virtual disk.
7. Run the Image Builder utility on the target device. This utility is at \Program Files\Citrix \Citrix Provisioning\P2PVS.exe.
8. Specify the destination drive letter of the newly created partition, or the original boot HDD partition, as the virtual disk. The virtual disk first points to the destination drive partition by default.
9. Clone the hard drive image to the virtual disk destination drive.
10. To connect the virtual disk to the provisioning server, from the console, set the target device to boot from the hard drive, then PXE boot the target device. If this step is not completed correctly, the provisioning server is unable to connect with the virtual disk.
11. Uninstall the product software. For details, see the section about removing Citrix Provisioning.
Install the master target device software

Complete the following steps to install the latest product software on the master target device.

1. Run the new Citrix Provisioning Server Target Device installer on the target device.
2. PXE boot the target device.

Image the hard drive

Complete the following steps to image the target device's hard drive onto the virtual disk file:

1. Run the Image Builder utility on the target device. This utility is at \Program Files\Citrix\Citrix Provisioning\P2PVS.exe.
2. Specify the drive letter of the newly created partition, or the original boot HDD partition, as the destination drive. The destination drive points to the virtual disk first partition by default.
3. Clone the hard drive image to the virtual disk destination drive.

Boot from the virtual disk

Using the Citrix Provisioning console, set the target device on the provisioning server to boot from virtual disk, then reboot the target device. The new target device is now running the new virtual disk image.

Upgrade a target virtual disk using in-place upgrade

Use the information contained in this article to upgrade a target device virtual disk using the in-place upgrade method.

Important:

This upgrade procedure can only be used for Citrix Provisioning target devices using version 7.6.1 and newer. For Provisioning Services 7.6.1 and newer, the upgraded target is installed using the target install method, and is not upgraded using binary replacement. Citrix recommends that you uninstall if you are using version 7.6.0 or earlier.

Boot a target device into private image mode or a maintenance version

Use the information in this section to boot a target device in either private image mode, or to boot in maintenance mode.
Tip:
Back up the virtual disk before upgrading before booting from private image mode.

Boot in private image mode

1. Shut down all other devices.

2. Set the virtual disk that you want to upgrade to **private image mode**:
 a) Open the virtual disk's properties dialog by right-clicking the virtual disk, and choose **Properties**.
 b) From the **Access** mode group, select **Private Image** (single device, read/write access):
3. Boot a target device using that virtual disk:

Boot in maintenance mode

1. Right-click the standard mode virtual disk and choose the option **Versions…** to open the virtual disk Versions screen.

2. Click the **New** button (in the upper right portion of the interface) to create a maintenance virtual
disk version:

3. Set a target device that is using that virtual disk to maintenance mode by right-clicking on the target, then choose the **Properties** option.

4. Choose **Maintenance** from the menu for the property type:
5. Boot a target device using the specified virtual disk version.

6. Choose option 1 from the boot menu that appears when booting the target device:

7. The provisioning status tray of the device resembles:
Tip:
The virtual disk's name is followed by a .x where x is greater than or equal to 1 and the extension is .avhdx or .avhd.

Upgrade the Citrix Provisioning target device software

After booting a device into private image mode or a maintenance version, use the information in this section to upgrade the Citrix Provisioning target device software.

To upgrade the Citrix Provisioning target device software:

1. Log into the target device using local administrator login credentials.
2. Copy the PVS_Device.exe or PVS_Device_x64.exe to the target device.
3. Right-click the installer and choose **Run as administrator**.
4. Run the installer and choose all the options as you would install a fresh version.
5. Click **Finish** to begin the upgrade.
6. Shut down the target device.
7. Open the virtual disk version interface.
8. Click **Promote** to promote the virtual disk to either a test or production version:
Tip

The New button is grayed out and inaccessible.

a) **Test version** - Use this version to verify the virtual disk is fully operational before promoting it to the production version.

b) **Production version** - Represents the version used by all users in a full roll out of the virtual disk to the production environment.

Configure

May 24, 2019

Use the information in this section to configure the console, farm, server, device collections, target device, and vDisks. Citrix Provisioning streams a single shared disk image, seen as the virtual disk, in a read-only format to the target device which resides in a collection. These target devices communicate with the Citrix Provisioning server. For more information, see the [Citrix Provisioning architecture article](#).
Console

May 14, 2019

Use the Citrix Provisioning console to manage components within a provisioning farm. The console can be installed on any machine that can access the farm. For more information, see Using the console.

Starting the Citrix Provisioning console

Before starting the console, make sure that the Stream Service is started and running on the Citrix Provisioning server. After the Configuration Wizard runs, the Stream Service starts automatically.

To start the console from the Start menu:

Select All Programs>Citrix>Provisioning Services > Citrix Provisioning Console

The console main window appears.

Common console actions

The following menu options are common to most objects in the console:

New Window From Here:

• To open a new console window, right-click on an object in the tree or in the details pane. Select the New Window from Here menu option.
• A new console window opens. Minimize the window to view and toggle between one or more windows.

Refresh:

• To refresh information in the console, right-click a folder, icon, or object, then select Refresh.

Export List:

1. To export table information from the details pane to a text or comma delimited file, select Export from the Action menu.
2. Select the location where this file is saved.
3. Type or select the file name in the File name textbox.
4. Select the file type from and Save as text boxes.
5. Click Save to save the file.
Help:
Select an object in the console, then select Help from the Action menu to display information about that object.

View Options: To customize a console view:

1. Select View, then select either Add/Remove Columns, or Customize.
 - If you selected Add/Remove Columns, use the Add and Remove buttons to select which columns to display.
 - If you selected Customize select the check box next to each MMC and snap-in view option that displays in the console window.
2. Click OK. The console window refreshes to display the selected options.

Performing tasks in the console

The following menu options are common when performing tasks in the console:

- Action menu: Select object-related tasks from the Action menu, including boot, restart, send message, view properties, copy, or paste properties.
- Right-click (context menu): Right-click a managed object to select object-related tasks. For a complete list of tasks, see that object’s management chapter within this guide.
- Drag and drop: Using the drag feature, you can quickly perform several common console tasks such as:
 - Move target devices by dragging them from one device collection, and dropping them on another device collection within the same site.
 - Assign a virtual disk to all target devices within a collection by dragging the virtual disk and dropping it on the collection. The virtual disk and the collection must be in the same site. The new virtual disk assignment replaces any previous virtual disk assignments for that collection.
 - Add a target device to a view by dragging the device, then dropping it on the view in console’s tree. Drag a provisioning server from one site, then drop it into another site. Note: Any virtual disk assignments that were specific to this server and any store information is lost.
- Copy and paste: Select an object in the console window, then use the Copy and Paste right-click menu options to quickly copy one or more properties of a virtual disk, provisioning server, or target device, to one or more existing vDisks, provisioning servers, or target devices. To copy the properties of a one object type and paste those properties to multiple objects of the same type:
 1. In the tree or details pane, right-click the object which has the properties you want to copy, then select Copy. The object-specific Copy dialog appears.
2. Place a check in the check box next to each of the object properties you want to copy, then click **OK**.

3. In the console tree, expand the directory where the object exists so that those objects display in either the tree or details pane.

4. Right-click on the object in the tree or details pane that you want to paste properties to, then select **Paste**.

- **Views:** Create views containing target devices to display only those target devices that you are currently interested in viewing or performing tasks on. Adding target devices to a view provides a quick and easy way to perform a task on members of that view, such as: Boot, Restart, Shutdown, Send message.

Views can be created at the site level or at the farm level. To perform a task on members of a view:

1. Right-click on views icon, then select the **Create View** menu option. The **View Properties** dialog appears.

2. Type the name and a description of the new view in the appropriate text boxes, then select the **Members** tab.

3. To add target devices to this view, click the **Add** button. The **Select Target Devices** dialog appears.

4. If you are creating the view at the farm level, select the site where the target devices reside. If you are creating the view at the site level, the site information is already populated.

5. From the menu, select the device collection where you want to add target devices members.

6. Select from the list of target devices that display, then click **OK**.

7. If necessary, continue adding target devices from different device collections within a site.

8. Click **OK** to close the dialog.

For more information on views, see **Managing Views**.

Configuring the bootstrap from the console

When a Citrix Provisioning server starts a target device, it downloads a boot file using the Citrix Provisioning MBA or PXE-compliant boot ROM. This file must be configured so that it contains the information needed to communicate with the provisioning servers. The **Configure Bootstrap** dialog is used to define the IP addresses for up to four provisioning servers in the boot file.

Note:

For alternative boot methods, see **Using the Manage Boot Devices Utility**.

The **Configure Bootstrap** dialog includes the following tabs:

- **General**
- **Target device IP**
- **Server lookup**
Options

General tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap file</td>
<td>The currently selected boot file. If you want to select a different boot file to configure, click the Add button or Read Servers from the Database button.</td>
</tr>
<tr>
<td>IP settings</td>
<td>The IP Address, Subnet Mask, Gateway, and Port for up to four provisioning servers, which performs login processing.</td>
</tr>
<tr>
<td>Add</td>
<td>Click the Add button to include a new provisioning server to the file. Specify up to four provisioning servers.</td>
</tr>
<tr>
<td>Edit</td>
<td>Highlight an existing provisioning server from the list, then click the Edit button to edit this server’s IP settings.</td>
</tr>
<tr>
<td>Remove</td>
<td>Select an existing provisioning server from the list, then click the Remove button to remove this server from the list of available provisioning servers.</td>
</tr>
<tr>
<td>Move up and move down</td>
<td>Select an existing provisioning server, and click to move up or down in the list of servers. The order in which the servers appear in the list determines the order in which the servers are accessed if a server fails.</td>
</tr>
<tr>
<td>Read servers from database</td>
<td>To populate the boot file with the Stream Service IP settings already configured in the database, click the Read Servers from Database button. This process clears the list then populates the list with the first four servers found in the database.</td>
</tr>
</tbody>
</table>

Target device IP tab
Field Description

Use DHCP to retrieve target device IP
Select this option to retrieve target device IP; default method.

Use static target device IP
Selecting this method requires that you identify a primary and secondary DNS and domain.

Server lookup tab

- **Use DNS:** Select this option to use DNS to find the server. The host name displays in the Host name textbox. If this option is selected along with **Use DHCP to retrieve Device IP option,** configure the DHCP server to provide the DNS server.

 <Note>
 If using high availability, specify up to four provisioning servers for the same Host name on your DNS server.
 </Note>

- **Use static IP:** Use the static IP address of the provisioning server from which to boot from. If you select this option, click **Add** to enter the following server information, then click **OK** to exit the dialog: IP Address, Subnet Mask, Gateway, Port (default is 6910).

 <Note>
 If using high availability (high availability), enter up to four provisioning servers. If you are not using high availability, only enter one. Use the **Move Up** and **Move Down** buttons to sort the servers boot order. The first one listed is the server that the target device attempts to boot from.
 </Note>

Options tab

Field Description

Verbose mode
Select the Verbose Mode option if you want to monitor the boot process on the target device (optional) or view system messages.

Interrupt safe mode
Select **Interrupt Safe Mode** if you are having trouble with your target device failing early in the boot process.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced memory support</td>
<td>This setting enables the bootstrap to support newer Windows OS versions and is enabled by default. Only disable this setting if your target device is hanging or behaving erratically in early boot phase.</td>
</tr>
<tr>
<td>Network recovery method</td>
<td>This field includes: Restore Network Connections. Selecting this option results in the target device attempting indefinitely to restore its connection to the provisioning server. Reboot to Hard Drive, a hard drive must exist on the target device. Selecting this option instructs the target device to perform a hardware reset to force a reboot after failing to re-establish communications. The user determines the number of seconds to wait before rebooting. Assuming the network connection cannot be established, PXE fails, and the system reboots to the local hard drive. The default number of seconds is 50, to be compatible with high availability configurations.</td>
</tr>
<tr>
<td>Logging polling timeout</td>
<td>Enter the time, in milliseconds, between retries when polling for provisioning servers. Each server is sent a login request packet in sequence. The first responding server is used. In systems that are not highly available, this time-out simply defines how often to retry the single available provisioning server with the initial login request. This time-out defines how quickly the round-robin routine switches from one server to the next in trying to find an active one. The valid range is from 1,000 milliseconds to 60,000 milliseconds.</td>
</tr>
</tbody>
</table>
Configuring the bootstrap file

1. In the console, select a provisioning server within the **Servers** folder in the tree, then select **Configure bootstrap** from the **Actions** pane or the context menu. The **Configure Bootstrap** dialog appears.

 Select the boot file that was copied to the directory you selected during the Citrix Provisioning server setup. The server returns the list of bootstrap files found under **Citrix Provisioning Program Data**. As a result, the server must be active for the **Configure Bootstrap** menu item to appear.

 Important:

 If a previous version of Citrix Provisioning was installed on this server, you must change the default location from:

   ```
   1 C:\Program Files\Citrix\Citrix Provisioning
   ```

 to:

   ```
   1 C:\Documents and Settings\All Users\Application Data\Citrix\Citrix Provisioning\Tftpboot
   ```

 If the default is not changed, the bootstrap file cannot be configured from the console and target devices fail to boot. A ‘Missing TFTP’ error message appears.

 If you installed the console on a separate machine, select the path of the remote provisioning server (which has boot services installed).

2. The **Configuration Wizard** writes the list of IP addresses to the database for the server. Selecting **Read Servers from the Database** gets the first IP and port for the server and populates it into
the list. This step is performed when the list is blank, or to replace the whole list with new values. These values are set in the Streaming network cards section of the Configuration Wizard’s Network Communications page. Citrix Provisioning uses the first network card selected.

3. Choose from the following options:

- Optionally select the **Verbose Mode** option if you want to monitor the boot process on the target device. This option enables system messaging on the target device.
- Select **Interrupt Safe Mode** if the target device hangs early in the boot process.
- Select the **Advanced Memory Support** option to enable the bootstrap to support newer Windows OS versions. Advanced Memory Support is enabled by default. Only disable this setting if your target device is hanging or behaving erratically in early boot phase.

4. Select from the following Network Recovery Methods:

- **Restore Network Connections** - Selecting this option results in the target device attempting, indefinitely, to restore its connection to the Citrix Provisioning server.
- **Reboot to Hard Drive** - Selecting this option instructs the target device to perform a hardware reset. This process forces a reboot after failing to re-establish communications for a defined number of seconds. The user determines the number of seconds to wait before rebooting. Assuming the network connection cannot be established, PXE fails, and the system reboots to the local hard drive. The default number of seconds is 50. Click the **Browse** button to search for and select the folder created in Step 1, or enter a full path or UNC name.

Important:

If the partition containing the vDisks is formatted as a FAT file system, a message displays a warning, resulting in suboptimal performance. Citrix recommends that you use NTFS to format the partition containing the vDisks. Do not change the address in the **Port** field.

All boot services (PXE, TFTP) must be on the same NIC (IP). But the Stream Service can be on a different NIC. The Stream Service allows you to bind to multiple IPs (NICs).

5. Configure the following:

Login Polling Timeout

Enter the time, in milliseconds, between retries when polling for servers. Each server is sent a login request packet in sequence. The first responding server is used. This time-out simply defines how often to retry the single available server with the initial login request. This time-out defines how quickly the round-robin routine switches from one server to the next, in trying to find an active server. The valid range is from 1,000 milliseconds to 60,000 milliseconds.

Login General Timeout

Enter the time-out, in milliseconds, for all login associated packets. Do not include the initial login polling time-out. The valid range is from 1,000 milliseconds to 60,000 milliseconds.
6. Click **OK** to save your changes.

Enable asynchronous I/O using the Citrix Provisioning console

Enable Asynchronous I/O streaming functionality for a virtual disk directly from the provisioning console. In the virtual disk properties screen, select **Asynchronous I/O**.

Tip:
For more information, see **Improving performance with asynchronous I/O streaming**.

Farm

October 25, 2019

Use the information in this section to configure a farm using the Citrix Provisioning console. This section includes information about the following elements:
• General Tab
• Security Tab
• Groups Tab
• Licensing Tab
• Options Tab
• Virtual disk Version Tab
• Status Tab
• Problem Report Tab

The tables that follow identify and describe properties on each tab of the Farm Properties dialog.

General tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter or edit the name of this farm.</td>
</tr>
<tr>
<td>Description</td>
<td>Enter or edit a description for this farm.</td>
</tr>
</tbody>
</table>

Security tab
Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add button</td>
<td>Click the Add button to apply farm administrator privileges to a group. Check each box next the groups to which farm administrator privileges apply.</td>
</tr>
<tr>
<td>Remove button</td>
<td>Click the Remove button to remove groups from those groups with farm administrator privileges. Check each box next the groups to which farm administrator privileges do not apply.</td>
</tr>
</tbody>
</table>

Groups tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add button</td>
<td>Click the Add button to open the Add System Groups dialog. To display all security groups, leave the text box set to the default *. To display groups, type part of the name using wildcards . For example, if you want to see MY_DOMAIN\Builtin\Users, type: *User, Users, or ser. However, if you type **MY_DOMAIN\Builtin*, you get all groups, not just those groups in the MY_DOMAIN\Builtin path. Select the check boxes next to each group included in this farm. Note: Filtering on groups was introduced in 5.0 SP2 for efficiency purposes.</td>
</tr>
<tr>
<td>Remove button</td>
<td>Click the Remove button to remove existing groups from this farm. Highlight the groups to which privileges do not apply.</td>
</tr>
</tbody>
</table>

Licensing tab
License server name
Type the name of the Citrix License Server in this textbox.

License server port
Type the port number that the license server uses or accept the default, which is 27000.

Options tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto add</td>
<td>When using this feature, select the site used by new target devices. If the No default site is chosen, the site of that Citrix Provisioning server that logs in the target device is used. Use the No default site setting if your farm has site scoped PXE/TFTP servers. Important: Enable this feature when adding new target devices. Enabling this feature results in computers being added without the approval of a farm administrator.</td>
</tr>
<tr>
<td>Auditing</td>
<td>Enable or disable the auditing feature for this farm.</td>
</tr>
<tr>
<td>Offline database support</td>
<td>Enable or disable the offline database support option. This option allows servers within this farm to use a snapshot of the database in case the connection is lost.</td>
</tr>
</tbody>
</table>

Virtual disk version tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert if number of versions from base image exceeds:</td>
<td>Set an alert if the number of versions from the base image is exceeded.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default access mode for new merge versions</td>
<td>Select the access mode for the virtual disk version after a merge completes. Options include; Maintenance, Test (default), or Production. Note: If the access mode is set to Production and a test version exists, the state of the resulting auto-merged version is automatically set to Maintenance or Test. If a Maintenance version exists, an automatic merge is not performed.</td>
</tr>
<tr>
<td>Merge after automated virtual disk update, if over alert threshold</td>
<td>Enable automatic merge. Enable the automatic merge feature if the number or virtual disk versions exceeds the alert threshold. Minimum value is 3 and maximum value is 100.</td>
</tr>
</tbody>
</table>

Status tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of the farm</td>
<td>Provides database status information and information on group access rights being used.</td>
</tr>
</tbody>
</table>

Problem report tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Citrix Name</td>
<td>Enter your Citrix username.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password associated with the Citrix user name.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password associated with the Citrix user name.</td>
</tr>
</tbody>
</table>

Note:
The password is not saved because a login token is acquired. For more information, see CIS.
Using the console to configure a farm

Run the Configuration Wizard on a provisioning server when creating a farm, adding new provisioning servers to an existing farm, or reconfiguring an existing provisioning server.

If all provisioning servers in the farm share configuration settings such as site and store information, consider running the Configuration Wizard Silently.

Configuration wizard settings

Before running the Configuration Wizard, be prepared to make the following selections:

- Network topology
- Identify the farm
- Identify the database
- Identify the site
- Citrix License Server settings
- Select Network Cards for the Stream Service
- Configure bootstrap Server

Note:
If errors occur during processing, the log is written to a ConfigWizard.log file, which is at C:\ProgramData\Citrix\Citrix Provisioning.

Tip:
The Configuration Wizard was modified at release 7.12 to include support for Linux streaming. See the installation article for information about the Linux streaming component.

Starting the configuration wizard

The Configuration Wizard starts automatically after Citrix Provisioning software is installed. The wizard can also be started by selecting Start > All Programs > Citrix > Citrix Provisioning > Citrix Provisioning Configuration Wizard.

Network topology

Complete the network configuration steps that follow.
1. Select the network service to provide IP addresses

 Note: Use existing network services if possible. If existing network services cannot be used, choose to install the network services that are made available during the installation process.

To provide IP addresses to target devices, select from the following network service options:

- If the Dynamic Host Configuration Protocol (DHCP) service is on this server, select the radio button next to one of the following network services to use, then click **Next**:
 - Microsoft DHCP
 - Citrix Provisioning BOOTP service
 - Other BOOTP or DHCP service
- If the DHCP service is not on this server, select the radio button next to **The service is running on another computer**, then click **Next**.

2. Select the network service to provide PXE boot information

Each target device downloads a boot file from a TFTP server.

Select the network service to provide target devices with PXE boot information:

- If you use Citrix Provisioning to deliver PXE boot information, select **The service that runs on this computer**. Then select from either of the following options, then click **Next**:
 - Microsoft DHCP (options 66 and 67)
 - Citrix Provisioning PXE Service
- If Citrix Provisioning does not deliver PXE boot information, select **The information is provided by a service on another device** option, then click **Next**.

Identify the farm

1. Select from the following farm options:

 - Farm is already configured
 Select this option to reconfigure an existing farm, then continue on to the **Configure user account settings** procedure. This option only appears if a farm exists.
 - Create the farm
 a) On the **Farm Configuration** dialog, select the **Create Farm radio** button to create a farm, then click **Next**.
 b) Use the **Browse** button to browse for existing SQL databases and instances in the network, or type the database server name and instance. Optionally, enter a **TCP port number** to use to communicate with this database server.

 Note: The combination of the database name and farm name must not exceed 54 characters. In such cases, the farm name displays as a truncated entry in the **Existing Farms** screen.
c) To enable database mirroring, enable the **Specify database mirror failover partner** option. Use the **Browse** button to identify the failover database server and instance names. Optionally, enter a **TCP port number** to use to communicate with this server.

d) Click **Next** to continue to the next step, select the database location.

- **Join an existing farm**
 a) On the **Farm Configuration** dialog, select the **Join Existing Farm** radio button to add this provisioning server to an existing farm, then click **Next**.
 b) Use the **Browse** button to browse for the appropriate SQL database and instance within the network.
 c) Select the farm name that displays by default, or scroll to select the farm to join.

 Note: More than one farm can exist on a single server. This configuration is common in test implementations.
 d) To enable database mirroring, enable the **Specify database mirror failover partner** option. Type or use the **Browse** button to identify the failover database server and instance names. Optionally, enter a **TCP port number** to use to communicate with this server.
 e) Click **Next**.
 f) Select from the following site options, then click **Next**:

 – **Existing Site**: Select the site from the menu to join an existing site.

 – **New Site**: Create a site by typing the name of the new site and a collection.

Continue on to configure the user account settings.

Identify the database

Only one database exists within a farm. To identify the database:

1. If the database server location and instance have not yet been selected, complete the following procedure.
 a) On the **Database Server** dialog, click **Browse** to open the **SQL Servers** dialog.
 b) From the list of SQL Servers, select the name of the server where this database exists. Specify the instance to use (to use the default instance, SQLEXPRESS, leave the instance name blank). In a test environment, this configuration can be a staged database.

 Note: Rerunning the Configuration Wizard to add extra provisioning server database entries, populates the **Server Name** and **Instance Name** text boxes. By default, SQL Server Express installs as an instance named **SQLEXPRESS**.
 c) Click **Next**. If this database is a new farm, continue on to the **Defining a Farm** procedure.

2. To change the database to a new database
 a) On the old database server, perform a backup of the database to a file.
 b) On the new database server, restore the database from the backup file.
c) Run the Configuration Wizard on each Citrix Provisioning server.

d) Select **Join existing farm** on the **Farm Configuration** dialog.

e) Enter the new database server and instance on the **Database Server** dialog.

f) Select the restored database on the **Existing Farm** dialog.

g) Select the site that the provisioning server was previously a member of on the **Site** dialog.

h) Click **Next** until the Configuration Wizard finishes.

3. Define a farm. Select the security group to use:

 • Use Active Directory groups for security

 Note: When selecting the Active Directory group to act as the farm administrator from the menu, choices include any group the current user belongs to. This list includes Built in groups, which are local to the current machine. Avoid using these groups as administrators, except for test environments. Some group names might be misleading and appear to be **domain groups**, but are **local domain groups**. For example, **ForestA.local/Builtin/Administrators**.

 • Use Windows groups for security

4. Click **Next**.

 Continue on to select the license server.

Create a store for a new farm

A new store can be created and assigned to the Citrix Provisioning server being configured:

Note: The Configuration Wizard only allows a server to create or join an existing store if it is new to the database. If a server exists in the database and it rejoins a farm, the Configuration Wizard might prompt the user to join a store or create a store. During this process, the selection is ignored.

1. On the **New Store** page, name the new Store.

2. Browse or enter the default path (for example: C:\PVSStore) to use to access this store, then click **Next**. If an invalid path is selected, an error message appears. Reenter a valid path, then continue. The default write cache location for the store is located under the store path for example: C:\PVSStore\WriteCache.

Identify the site

When joining an existing farm, identify the site where this provisioning server is a member. Identify a site by either creating a site or selecting an existing site within the farm. When a site is created, a default target device collection is automatically created for that site.
Select the license server

1. Enter the name (or IP address) and port number of the license server (default is 27000). The provisioning server must be able to communicate with the license server to get the appropriate product licenses.
2. Optionally, select the check box **Validate license server version and communication**. This option verifies that the license server can communicate with this server and that the appropriate version of the license server is used. If the server is not able to communicate with the license server, or the wrong version of the license server is being used, an error message appears. You cannot proceed.
3. Click **Next** to continue on to configure user account settings.

Configure user account settings

The Stream and Soap services run under a user account. Configure data reader and data writer database roles automatically using the Configuration Wizard to provide database access privileges to a user account.

1. On the **User Account** dialog, select the user account that the Stream and Soap services run under:
 • Network service account (minimum privilege local account that authenticates on the network as computers domain machine account).
 • Specified user account (required when using a Windows Share; workgroup or domain user account). Type the user name, domain, and password information in the appropriate text boxes.
2. Click **Next**, then continue on to selecting network cards for the Stream Service.

Group managed service accounts

Citrix Provisioning supports Group Managed Service Accounts (gMSA). These accounts are managed domain accounts providing automatic password management and simplified SPN management over multiple servers.
Creating self-signed certificates for Linux streaming

When streaming Linux desktops, the Linux target devices must be linked to the provisioning Soap server via an SSL connection. The CA certificate must be present on both the provisioning server and the target device.

Using the Citrix Provisioning Configuration Wizard, you can choose to add the proper certificate from the provisioning Soap container, specifically for Linux desktops.

Creating self-signed certificates with PoSH

To create a certificate:

1. Use the following PowerShell command (as an administrator) to create a self-signed certificate that is placed into the provisioning Soap container:

```powershell
#New-SelfSignedCertificate -Type SSLServerAuthentication -Container PVSSoap -Subject "CN=PVS-01.fqdn" -CertStoreLocation "Cert:\LocalMachine\My" -KeyExportPolicy Exportable
```
Important:
This command requires PowerShell 5.0 or later. Windows Server 2012 comes with PowerShell 4.0 which does not accept the command described in this section.

2. Import the generated certificate into the local machine’s Trusted Root Certificate Authority store from the Personal store.

3. Run the Citrix Provisioning Configuration Wizard. At the Soap SSL Configuration prompt, choose the newly generated certificate by highlighting in blue, and continue through the wizard:

Tip:
When the Soap SSL Configuration page first loads, the certificate is highlighted which gives the appearance that it is selected. Ensure that the certificate is selected, it appears as a blue item in the table.

Select network cards for the stream service

1. Select the check box next to each of the network cards that the Stream Service can use.

2. Enter the base port number that is used for network communications in the First communications port: text box.
3. Select the Soap Server port (default is 54321) to use for Console access, then click **Next**.

Continue on to select the bootstrap server.

Configure the bootstrap server

1. Select the bootstrap server. To use the TFTP service on this provisioning server:
 a) Select the Use the TFTP Service option, then enter or browse for the boot file. The default location is: `C:\Documents and Settings\All Users\ProgramData\Citrix\Provisioning Services\Tftpboot`

 If a previous version of Citrix Provisioning was installed on this server, and the default location is:
 `C:\Program Files\Citrix\Provisioning Services\TftpBoot`

 run the Configuration Wizard to change the default location to:
 `C:\Documents and Settings\All Users\ProgramData or ApplicationData\Citrix\Provisioning Services\Tftpboot`

 If the default is not changed, the bootstrap file cannot be configured from the Citrix Provisioning console and target devices fail to boot. The message ‘Missing TFTP’ appears.
 b) Click **Next**.

2. Select **Provisioning Servers** to use for the boot process:
 a) Use the **Add** button to add more provisioning servers to the list. The **Edit** button to edit existing information, or to remove the server from the list. Use the **Move up** or **Move down** buttons to change the server boot preference order. The maximum length for the server name is 15 characters. Do not enter the **FQDN** for the server name. In a high availability implementation, at least two provisioning servers must be selected as boot servers.
 b) Optionally, highlight the IP address of the provisioning server that target devices boot from, then click **Advanced**. The **Advanced Stream Servers Boot List** appears.

 The following list describes advanced settings that you can choose from. After making your selections, click **OK** to exit the dialog, then click **Next** to continue.

 - **Verbose mode:** Select the Verbose Mode option if you want to monitor the boot process on the target device (optional) or view system messages.
 - **Interrupt safe mode:** Select **Interrupt Safe Mode** if you are having trouble with your target device failing early in the boot process. This option enables debugging of target device drivers that exhibit timing or boot behavior problems.
 - **Advanced memory support:** This setting enables the bootstrap to support newer Windows OS versions and is enabled by default. Disable this setting on Windows Server OS
32 bit versions that do not support PXE. Or if your target device is hanging or behaving erratically in early boot phase.

Network recovery method:

- **Restore Network Connections:** Selecting this option results in the target device attempting indefinitely to restore its connection to the provisioning server.

 Note: Because the Seconds field does not apply, it becomes inactive when selecting the **Restore Network Connections** option.

- **Reboot to Hard Drive:** (A hard drive must exist on the target device). Selecting this option instructs the target device to perform a hardware reset to force a reboot after failing to re-establish communications for a defined number of seconds. The user determines the number of seconds to wait before rebooting. Assuming the network connection cannot be established, PXE fails, and the system reboots to the local hard drive. The default number of seconds is 50, to be compatible with high availability configurations.

Logon polling timeout: Enter the time in milliseconds between retries when polling for provisioning servers. Each server is sent a login request packet in sequence. The first responding server is used. In non-HA configurations, this time-out simply defines how often to retry the single available server with the initial login request. This time-out defines how quickly the round-robin routine switches from one server to the next in trying to find an active server. The valid range is from 1,000 milliseconds to 60,000 milliseconds.

Log in general timeout: Enter the time-out in milliseconds for all login associated packets, except the initial login polling time-out. The time-out is longer than the polling time-out because the server needs time to contact all associated servers, some of which are unreachable. Unreachable servers require retries and time-outs from the provisioning server to the other provisioning servers to determine if they online. The valid range is from 1,000 milliseconds to 60,000 milliseconds.

3. Verify that all configuration settings are correct, then click **Finish**.

Bootstrap configurations can be reconfigured by selecting the **Configure Bootstrap** option from the **Provisioning Services Action** menu in the console.

Server

November 1, 2019

You typically perform the following tasks when configuring Citrix Provisioning servers in your farm.
Important:

After changing a provisioning server's properties, restart the Stream Service to implement those changes. Use caution when restarting services. If target devices are connected to the server, changes can prevent the device from reconnecting. The IP address field on the Network tab must reflect the real static IP address of the server.

Note:

A single provisioning server supports up to 4,095 target devices.

Provisioning server properties

On the Citrix Provisioning console, the **Server Properties** dialog allows you to modify provisioning server configuration settings. To view existing properties, choose one of the following methods:

- Highlight a provisioning server, then select **Properties** from the **Action** menu.
- Right-click a provisioning server, then select **Properties**.
- If the details pane is open, highlight a provisioning server, then select the **Properties** menu item from the list of actions.

The **Server Properties** dialog includes the following tabs:

- General
- Network
- Stores
- Options
- Logging

Tip:

Citrix Provisioning displays a message when a change made on a **Server Properties** dialog requires a server reboot.

General tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and description</td>
<td>Displays the name of the provisioning server and a brief description. The maximum length for the server name is 15 characters. Do not enter FQDN for the server name.</td>
</tr>
</tbody>
</table>
Field Description

Power rating
A power rating is assigned to each server, which is then used when determining which server is least busy. The administrator defines the scale to use. For example, an administrator rates all servers on a scale of 1–10, or on a scale of 100–1000. On a scale of 1–10, a server with a rating of 2 is considered twice as powerful as a server with a rating of 1. Therefore it would be assigned twice as many target devices. When using a scale of 100–1000, a server with a power rating of 200 is considered twice as powerful as a server with the rating of 100. Therefore it would also be assigned twice as many target devices. Using the default setting of 1.0 for all servers results in even device loading across servers. In this case, the load balancing algorithm does not account for individual server power. Ratings can range between 0.1-1000.0. 1.0 is the default.

Log events to the server’s event log
Select this option if you want this provisioning server’s events captured in the Windows Event log.

Server tab

The following options are assessable in the Advanced Server Properties window.

Field Description

Threads per port
Number of threads in the thread pool that service UDP packets received on a given UDP port. Between four and eight are reasonable settings. Larger numbers of threads allow more target device requests to be processed simultaneously, but consumes more system resources.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers per thread</td>
<td>Number of packet buffers allocated for every thread in a thread pool. Make the number of buffers per thread large enough to enable a single thread to read one I/O transaction from a target device. Buffers per thread are ideally be set to (\frac{IBurstSize}{MaximumTransmissionUnit} + 1). Setting the value too large consumes extra memory, but does not hurt efficiency. Setting the value too small consumes less RAM, but detrimentally affects efficiency.</td>
</tr>
<tr>
<td>Server cache timeout</td>
<td>Every server writes status information periodically to the Citrix Provisioning database. This status information is time-stamped on every write. A server is accessible by other servers in the farm if the status information in the database is newer than the server cache timeout seconds. Every server in the farm attempts to write its status information every 2 seconds, at twice the timeout rate. A shorter server cache timeout value allows servers to detect offline servers more quickly, at the cost of extra database processing. A longer Server cache timeout period reduces database load at the cost of a longer period to detect lost servers.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Local and concurrent I/O limits</td>
<td>Controls the number of concurrent outstanding I/O transactions that can be sent to a given storage device. A storage device is defined as either a local drive letter (C: or D: for example) or as the base of a UNC path, for example \ServerName. Since Citrix Provisioning is a highly multi-threaded service, it is possible for it to send hundreds of simultaneous I/O requests to a given storage device. Requests are queued up by the device and processed when time permits. Some storage devices, Windows Network Shares most notably, do not deal with this large number of concurrent requests well. They can drop connections, or take unrealistically long to process transactions in certain circumstances. You achieve better performance with these types of devices when you throttle the concurrent I/O transactions. A local device is defined as any device starting with a drive letter. A remote device is defined as any device starting with a UNC server name. Defining a device is a simple way to achieve separate limits for network shares and for local drives. If a slow machine provides a network share, or slow drives exist on the machine, a count of 1–3 for the remote limit is necessary. This configuration achieves the best performance with the share. If you are using fast local drives, you might be able to set the local count fairly high. Only empirical testing would provide you with the optimum setting for a given hardware environment. Setting either count to 0 disables the feature and allows Citrix Provisioning to run without limits. This configuration might be desirable on fast local drives. If a network share is overloaded, more device retries and reconnections during boot storms occurs. Boot storms are caused by read/write and open file times greater than 60 seconds. Throttling the concurrent I/O transactions on the share reduces these types of problems considerably.</td>
</tr>
</tbody>
</table>
Network tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum transmission unit</td>
<td>Number of bytes that fit in a single UDP packet. For standard Ethernet, the default value is correct. If you are attempting to operate over a WAN, then a smaller value is needed to prevent IP fragmentation. Citrix Provisioning does not currently support IP fragmentation and reassembly. If you are using a device or software layer that adds bytes to every packet for security reasons, a smaller value is needed. If your entire infrastructure supports jumbo packets you can set the MTU to 50 bytes less than your jumbo packet max size to achieve much higher network throughput.</td>
</tr>
<tr>
<td>I/O burst size</td>
<td>The number of bytes transmitted in a single read/write transaction before an ACK is sent from the server or device. The larger the I/O burst, the faster the throughput to an individual device, but the more stress placed on the server and network infrastructure. Also, larger I/O Bursts increase the likelihood of lost packets and costly retries. Smaller I/O bursts reduce single client network throughput, but also reduce server load. Smaller I/O bursts also reduce the likelihood of retries. I/O Burst Size / MTU size must be (\leq 32), that is, only 32 packets can be in a single I/O burst before an ACK is needed.</td>
</tr>
<tr>
<td>Socket communications</td>
<td>Enable non-blocking I/O for network communications.</td>
</tr>
</tbody>
</table>
Pacing tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot pause records</td>
<td>The amount of time that the device pauses if the Maximum devices booting limit has been reached. The device displays a message to the user and then waits before attempting to continue to boot. The device continues to check with the server every Boot pause seconds until the server allows the device to boot.</td>
</tr>
<tr>
<td>Maximum boot time</td>
<td>The amount of time a device is considered in the booting state. Once a device starts to boot, the device is considered booting until the Maximum boot time has elapsed for that device. After this period, it will no longer be considered booting even if the device has not finished booting. Maximum boot time is the time limit per device for the booting state for boot pacing.</td>
</tr>
<tr>
<td>Maximum devices booting</td>
<td>The maximum number of devices a server boots at one time before pausing new booting devices. The number of booting devices must drop below this limit before the server allows more devices to boot.</td>
</tr>
<tr>
<td>Virtual disk creation pacing</td>
<td>Amount of pacing delay to introduce when creating a virtual disk on this provisioning server. Larger values increase the virtual disk creation time, but reduce provisioning server overhead to allow target devices that are running, to continue to run efficiently.</td>
</tr>
</tbody>
</table>

Device tab
License timeout

Amount of time since last hearing from a target device to hold a license before releasing it for use by another target device. If a target device shuts down abnormally (loses power for example) its license is held for the specified timeout period.

Network tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The IP addresses that the stream service uses for a target device to communicate with this provisioning server. When you add a new server, enter the valid IP address for the new server. The following fields are including when viewing IP address information: Add — Add an IP address for the selected server. Edit — Opens the IP address dialog so that the IP address for the selected server can be changed. Remove — Removes the selected IP address from the list of available IP addresses for the selected provisioning server.</td>
</tr>
<tr>
<td>Ports</td>
<td>Enter the First and Last UDP port numbers to indicate a range of ports to be used by the Stream Service for target device communications. Note: The minimum is five ports in a range. The default first port number is 6910 and the last port number is 6930.</td>
</tr>
</tbody>
</table>

Stores tab
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stores</td>
<td>Lists all stores (logical names representing physical paths to vDisks that are available to this provisioning server. This field includes the following options: Add — Opens the Store Properties dialog. A new store and that store's properties are included in the list of stores, overriding the default path. Edit — Opens the Store Properties dialog so that the store’s properties can be changed. Select an existing store, then click Edit to change that store’s properties. Remove — Removes the selected store from the list of available stores for this provisioning server.</td>
</tr>
</tbody>
</table>
Field Description

Store properties

Includes the following fields: Store — The name of the store. This field displays when editing an existing store. For a new store, select the store from the menu. Path** used to access the store — The store path is only required if you need to override the 'default path' configured in the store properties. If the default path in the store properties is valid for this server, leave the path for the store blank in the server store properties. Note: If you are setting an override store path in the Server’s Properties dialog, set the path before creating a version of the virtual disk. Because this path information is stored and referenced in .vhdx header information, changing the path after versioning possibly causes unexpected results.

Write cache paths — Click the Add or Edit buttons to open the Write cache path dialog, then enter the appropriate write cache path for this store. Select an existing path from the list, then click Remove to remove the paths association with the store. Use the Move Up and Move Down buttons to change the order of cache path priority. If configured for high availability, the order that the cache paths are listed must be the same order for each server.

Options tab
Active directory

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active directory</td>
<td>Automate computer account password updates — If target devices are domain members, and require renegotiation of machine passwords between Windows Active Directory and the target devices, select the Automate computer account password updates. Use the slider to set the number of days between renegotiation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable automatic virtual disk updates</td>
<td>Check to enable vDisks to update automatically, then set the time of day to check for updates.</td>
</tr>
</tbody>
</table>

Logging tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Logging level | Select from the following logging level options:
TRACE — TRACE logs all valid operations.
DEBUG — The DEBUG level logs details related to a specific operation and is the highest level of logging. If logging is set to DEBUG, all other levels of logging information are displayed in the log file; **INFO** — Default logging level. The INFO level logs information about workflow, which generally explains how operations occur. **WARN** — The WARNING level logs information about an operation that completes successfully, but there are issues with the operation. **ERROR** — The ERROR level logs information about an operation that produces an error condition. **FATAL** — The FATAL level logs information about an operation that the system cannot recover from. |

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size maximum</td>
<td>Enter the maximum size that a log file can reach before a new file is created.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Backup files maximum</td>
<td>Enter the maximum number of backup log files to retain. When this number is reached, the oldest log file is automatically deleted.</td>
</tr>
</tbody>
</table>

Copying and pasting properties

To copy the properties of one provisioning server to another provisioning server:

1. Right-click on the provisioning server to copy properties from, then select **Copy server properties**. The **Copy Server Properties** dialog appears.
2. Enable the check box next to each property to copy, or click the **Select all** button to copy all properties.
3. Click **Copy**. Right-click on the provisioning server that you want to copy properties to, then select **Paste**.

Configuring Citrix Provisioning servers manually

If you are setting up a remote provisioning server, or have special requirements, configure and start your stream services manually. Run the Configuration Wizard on remote provisioning servers to insure that all settings are configured properly. Failure to run the Configuration Wizard makes it impossible for you to map a virtual disk.

Rerunning the configuration wizard

The Configuration Wizard can be used when updating the Stream Service of the IP address of your provisioning server changes. If you change your provisioning server’s IP address for any reason, rerun the configuration wizard and choose the new IP address when prompted. Completing the Configuration Wizard resets the appropriate IP addresses in the configuration and restarts the Stream Service.

Starting and configuring the stream service manually

After configuring the Stream Service, you must start the service for the change to take effect. Citrix recommends setting the service to start automatically each time a provisioning server starts.

Note:
The Configuration Wizard starts and configures the necessary services to start automatically. Use the instructions in this section. If you need to start and configure the services manually.

Start the Stream Service in order for the provisioning server to operate. Start the following boot services if they have not yet been started:

- BOOTP Service or PXE Service
- TFTP Service

To manually start services:

1. From the Windows Start menu, select Settings, and then click Control Panel.
2. From the Control Panel, double-click the Administrative Tools icon.
3. From the Administrative Tools window double-click on the Services icon. The Services window appears.
4. From the Services window, right-click on the service you want to start, then select Start.

To manually configure services to start automatically upon booting the provisioning server:

1. From the Windows Start menu, select Settings, then click Control Panel.
2. From the Control Panel, double-click the Administrative Tools icon.
3. From the Administrative Tools window double-click on the Services icon. The Services window appears.
4. Right-click the service you want to configure, then select Properties.
5. Change the Startup Type to Automatic to configure the service to start automatically each time the system boots.

Deleting a provisioning server

Occasionally, you have to delete a provisioning server from the list of available servers in a farm.

Note:

Before you can delete a provisioning server, first mark the server as down or take the server offline, otherwise the Delete menu option fails to appear. The stream service cannot be deleted.

When you delete a provisioning server, you do not affect virtual disk image files or the contents of the server drives. However, you do lose all paths to the virtual disk image files on that server.

After you delete a server, target devices are no longer assigned to any virtual disk image files on that server. The target device records remain stored in the Virtual LAN Drive database, but the device cannot access any virtual disk that was associated with the deleted server.
Note:
If there are vDisks associated with the provisioning server being deleted, Citrix recommends that you create backup copies and store them in the virtual disk directory before deleting.

To delete a provisioning server:

1. In the Citrix Provisioning console, highlight the provisioning server that you want to delete, then select **Show connected devices** from the **Action** menu, right-click menu, or **Action** pane. The **Connected Target Devices** dialog appears.
2. In the **Target Device** table, highlight all devices in the list, then click **Shutdown**. The **Target Device Control** dialog appears.
3. Type a message to notify target devices that the provisioning server is being shut down.
4. Scroll to select the number of seconds to delay after the message is received.
5. If the Stream Service is running on the provisioning server, stop the Stream Service. For more information, see **Starting, Restarting, or Stopping the Stream Service**.
6. Unassign all target devices from the provisioning server.
7. Highlight the server you want to delete, then choose **Delete** from the **Action** menu, right-click menu, or **Action** pane. A delete confirmation message appears.
8. Click **Yes** to confirm the deletion. The provisioning server is deleted and no longer displays in the console.

Starting, stopping, or restarting a server

Tip:
Starting, stopping, or restarting Citrix Provisioning can possibly result in unexpected behavior. For more information, see **Servers**.

To start, stop, or restart Citrix Provisioning Services on a provisioning server:

1. Highlight the provisioning server in the Console, then select the **Stream Services** menu option from the **Actions** menu, right-click menu, or **Actions** pane. The **Server** dialog appears.
2. Select from the following menu options:
3. Highlight the provisioning servers that you want to configure, then click that action's button.
4. Click **Close** to exit the dialog.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Starts the Stream Service</td>
</tr>
<tr>
<td>Stop</td>
<td>Places the provisioning server in off-line mode</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart</td>
<td>After modifying provisioning server settings, such as adding or removing IPs, restart the stream service.</td>
</tr>
</tbody>
</table>

Important considerations

To start or stop SOAP or stream services on a provisioning server, you must have Windows permissions. This limitation is due to Window's security issue.

To resolve this issue, install the `subinacl` tool from the Microsoft site, then use the following command line to set the permissions on the Stream Service:

```
subinacl /service streamservice /grant=NetworkService=TOP
```

Citrix Provisioning console fails to restart or stop

Sometimes, the console fails to restart or stop services when running a stream service with a network service account. When the console fails, the service appears in the started state, however, the console prevents you from restarting or stopping the Stream Service.

Tip:

By default, a network service account does not have permissions to start/stop services.

For example, if services are configured with a network services account, running the configuration wizard results in an error condition. The status appears as running and streaming the virtual disk, however, the service cannot be restarted or stopped:
You can resolve this issue by associating the stream service with a specific account which has the required permissions to access the database. If the services are configured with a specific account, like `anuj.com\administrator`, the status appears as started. You can restart or stop the services from the provisioning console:
Open all default provisioning server's Windows firewall ports

The Citrix Provisioning server installation includes the option to open all the default server's Windows firewall ports. This configuration is useful for administrators who want to facilitate the installation process by automatically opening all Citrix Provisioning ports, without manually specifying which ports to open.
During installation, use one of the following options in the Default Firewall Ports installation screen:

- Automatically open all Citrix Provisioning ports
- I will open the CPV ports manually

Tip:
The screen is only available if the Windows firewall is active.

Device collections

May 14, 2019

Device collection properties are on the following tabs:

- General
- Security
- Auto-Add

General tab
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of this device collection.</td>
</tr>
<tr>
<td>Description</td>
<td>Describes this device collection.</td>
</tr>
<tr>
<td>Template target device</td>
<td>To use the settings of an existing target device as the template, select that device from the menu, then click OK.</td>
</tr>
</tbody>
</table>

Security tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups with Device Administrator access</td>
<td>Assign or unassign device administrators to this collection using Add or Remove. Device administrators can perform tasks on all device collections to which they have privileges.</td>
</tr>
<tr>
<td>Groups with Device Operator access</td>
<td>Assign or unassign device operators to this collection using Add or Remove. Device operators have the following privileges: Boot and reboot a target device, Shut down a target device, View target device properties, View virtual disk properties for assigned target devices</td>
</tr>
</tbody>
</table>

Auto-Add tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template target device</td>
<td>Displays the name of the target device. Or, if a device was previously selected, or `<No template device> if a device was not selected. Use the menu to select a device to use as the template for adding new devices to this collection. To view a selected device’s properties, click Properties (read-only dialog appears).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Prefix</td>
<td>Enter a static prefix that helps identify all devices that are being added to this collection. For example: 'Boston' to indicate devices located in Boston. The prefix can be used with the suffix, but is not required if a suffix is provided. The entire device name can have a maximum of 15 characters (the prefix length + number length + suffix length). For example, the following device names are considered valid: Boston000Floor2 (prefix, incrementing number length, and suffix provided. The maximum of 15 characters has been reached), Boston000 (no suffix is provided), 000Floor2 (no prefix is provided). The prefix cannot end with a digit. The prefix and suffix combination must be unique in each collection.</td>
</tr>
<tr>
<td>Number length</td>
<td>Enter the length of the incrementing number to associate with the devices being added to this collection. This number is incremented as each device is added. For example, if the number length is set to 3, Citrix Provisioning starts naming at 001. It stops naming or adding devices after the number reaches 999. Enable the Zero fill option to automatically add the necessary number of preceding zeros to a numbers length. For example, if the numbers length is equal to 3, then the first target device number would be assigned as ‘001’. Enable the Zero fill option to automatically add the necessary number of preceding zeros to a numbers length. For example, if the numbers length is set to ‘4’, then the first target device number would be assigned as ‘0001’. The number length must have a minimum of three digits and a maximum of 9 digits.</td>
</tr>
</tbody>
</table>
Field Description

Suffix

Enter a static suffix that helps to identify all devices being added to this collection. For example: `Boston001Floor2` might be helpful to indicate the floor where these devices reside. The suffix can be used with the prefix, but is not required if a prefix is provided. The entire device name can have a maximum of 15 characters (the prefix length + number length + suffix length). The suffix cannot start with a digit. The prefix and suffix combination must be unique in each collection.

Last incremental number

Indicates the last incremental number that was assigned to a device name in this collection. This number can be reset to '0' but cannot be lower than the highest number for the same Prefix/Suffix combination.

Creating a device collection

To create a device collection:

1. In the Citrix Provisioning console, right-click on the **Device Collections** folder where the new collection exists, then select the **Create device collection** menu option. The **Device Collection Properties** dialog appears.
2. On the **General** tab, type a name for this new device collection in the **Name** text box. Include a description of this collection in the **Description** text box, then click the **Security** tab.
3. Under the **Device Administrators** list, click **Add**. The **Add Security Group** dialog appears.
4. To assign a group with the Device Administrator role, type or select the appropriate domain and group name in the text box, then click **OK**.
5. Optionally, repeat steps 2 and 3 to continue assigning groups as device administrators.
6. Under the **Device Operators** list, click **Add**. The **Add Security Group** dialog appears.
7. To assign a group with the Device Operator role, type or select the appropriate domain and group name in the text box, then click **OK**.
8. Optionally, repeat steps 2 and 3 to continue assigning groups as device operators.
9. Click **OK** to close the dialog box.
Deleting a device collection

Deleting a device collection removes any target device member records within the collection. Recreate the records by manually adding them or using the Auto-add feature.

Tip
Deleting a target device also deletes that device from any views that it was associated with.

If target devices are members of collections within the same site, the members of one collection can be moved to other collections. Once a collection is moved to another one, the original collection can be deleted. When you need to move a device collection to a different site or that site becomes obsolete, use the export and import features to add the devices to a collection in another site. The original collection can then be deleted.

To delete a device collection:

1. In the Citrix Provisioning console tree, right-click on the collection folder that you want to delete, then select the **Delete** menu option. A confirmation message appears.
2. Click **OK** to delete this collection. The collection no longer displays in the console tree.

Target devices

May 14, 2019

After you install and configure provisioning components, a virtual disk is created from a device’s hard drive. This disk is created from a snapshot of the OS and application image, it then stores that image as a virtual disk file on the network. The device that is used during this process is seen as a master target device. The devices that use those vDisks are called target devices.

Configuring target devices that use virtual disks

Citrix Virtual Apps and Desktops with virtual disk technology is a high-performance enterprise desktop virtualization solution that makes VDI accessible to workers requiring personalized desktops using pooled, static virtual machines.

Target devices that use personal vDisks are created using the Citrix Virtual Apps and Desktop Setup Wizard. In a Citrix Provisioning farm, the wizard creates and adds target devices with personal vDisks to an existing site’s collection. It then assigns an existing shared-mode virtual disk to that device.

The wizard also creates virtual machines to associate with each device. A type of catalog in Citrix Studio allows you to preserve the assignment of users to desktops (static assignment). The same users
are assigned the same desktop for later sessions. In addition, the wizard creates a dedicated storage
disk (before logon) for each user so they can store all personalization's to their desktop. Personaliza-
tions include changes to the virtual disk image or desktop that are not made as a result of an image
update. These personalizations include application settings, adds, deletes, modifications, and docu-
ments.

Target devices that use personal vDisks can only inherit properties from another device that uses per-
sonal vDisks.

Tip:
Use the Device with Personal vDisk Properties dialog to configure, view, or modify the proper-
ties of a target device using a Personal vDisk.

General tab

When you update read-only fields, the device needs to be deleted and re-created with the Citrix Virtual
Apps and Desktops Setup Wizard.

<table>
<thead>
<tr>
<th>Menu option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the target device or the name of the person who uses the target device. The name can be up to 15 bytes in length. However, the target device name cannot be the same as the machine name being imaged. This field is read-only. If the target device is a domain member, it uses the same name as in the Windows domain, unless it is the same as the imaged machine name. When the target device boots from the virtual disk, the name displayed here becomes the target device machine name.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a description to associate with this target device.</td>
</tr>
<tr>
<td>MAC</td>
<td>The media access control (MAC) address of the NIC that is installed in the target device. This field is read-only.</td>
</tr>
</tbody>
</table>
Menu option Description

<table>
<thead>
<tr>
<th>Menu option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Displays the UDP port value. In most instances, you do not have to change this value. However, if target device software conflicts with any other IP/UDP software, that is, they share the same port, you must change this value.</td>
</tr>
<tr>
<td>Virtual disk</td>
<td>Name of the virtual disk that this device uses. This field is read-only.</td>
</tr>
<tr>
<td>Change</td>
<td>Use to change the virtual disk assignment for this device. The Assign vDisk dialog displays with the currently assigned virtual disk’s Store information. The virtual disk you select must be from the same virtual disk base image as the previous image.</td>
</tr>
<tr>
<td>Personal vDisk drive</td>
<td>Drive letter from which the Personal vDisk is accessed. Default is P: (range allowed is between E: to U: and W: to Z:). This field is read-only.</td>
</tr>
</tbody>
</table>

Personality tab

<table>
<thead>
<tr>
<th>Menu option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and string</td>
<td>There is no fixed limit to the number of names you can add. However, the maximum name length is 250 characters and the maximum value length is 1000 characters. Use any name for the field Name, but do not repeat a field name in the same target device. Field names are not case sensitive. The system interprets “FIELDNAME” and “fieldname” as the same name. Blank spaces entered before or after the field name are automatically removed. A personality name cannot start with a $. This symbol is used for reserved values such as $DiskName and $WriteCacheType.</td>
</tr>
</tbody>
</table>
Status tab

The following target device status information appears:

- **Status**: status of this device (active or inactive).
- **IP Address**: provides the IP Address or unknown.
- **Server**: the provisioning server communicating with this device.
- **Retries**: the number of retries to permit when connecting to this device.
- **Virtual disk**: provides the name of the virtual disk or displays as unknown.
- **Virtual disk version**: version of this virtual disk currently being accessed.
- **Virtual disk full name**: the full file name for the version currently being accessed.
- **Virtual disk access**: identifies that the version is in Production (it cannot be in Maintenance or Test).
- **License information**: Depending on the device vendor, this field displays product licensing information. It includes: n/a, Desktop License, data center License, XenApp License, or Citrix Virtual Apps and Desktops License.

Logging tab

Select the logging level or select **Off** to disable logging:

- **Off** — Logging is disabled for this provisioning server.
- **Fatal** — Logs information about an operation that the system might not recover from.
- **Error** — Logs information about an operation that produces an error condition.
- **Warning** — Logs information about an operation that completes successfully, but there are issues with the operation.
- **Info** — Default logging level. Logs information about workflow, which generally explains how operations occur.
- **Debug** — Logs details related to a specific operation and is the highest level of logging. If logging is set to DEBUG, all other levels of logging information are displayed in the log file.
- **Trace** — Logs all valid operations.

Personal vDisk test mode

Use the personal vDisks test device to test virtual disk updates for a device that uses personal vDisks within a test environment. Using the PvD production environment, you can then test for compatibility with your actual environment.

Considerations

- Personal vDisk devices can be test or production devices.
• Citrix Provisioning displays an appropriate error message when trying to boot a private image or a maintenance version with a Personal vDisk device. Only devices without personal vDisks disk can boot a private image or maintenance version.
• You can change the virtual disk assignment in the Citrix Provisioning console with these methods:
 – Change assignment with **Target Device properties vDisk** tab.
 – Copy and paste target device properties.
 – Drag a virtual disk to a collection or a view.
• Informational warning displays when changing virtual disk assignment for Personal vDisk devices.
• Changing Personal vDisk device type requires extra privileges for the soap/stream services user.
 – Local administrator on the Citrix Provisioning server system.
 – Citrix Virtual Apps and Desktops full administrator.
 – Full permission to the Citrix Virtual Apps and Desktops database (a Citrix Virtual Apps and Desktops requirement).
• For merging, Citrix Provisioning automatically reboots devices and Personal vDisk runs inventory when needed.
• Citrix recommends that you dedicate a small group of Personal vDisk devices for test mode in their own catalog. Also, keep this desktop group in maintenance mode when not used. Otherwise, Citrix Virtual Apps and Desktops power management is in control and turns devices on and off. This configuration potentially interferes with merging.
• By default, Citrix Studio does not show the Personal vDisk stage.
• The personal vDisks test mode environment requires that two catalogs are available: one for Personal vDisk test devices and the other for Personal vDisk production devices. If you want to use this feature in an environment where both Personal vDisk test and production devices exist in one catalog, consider changing a production Personal vDisk device to **test**. This configuration causes all devices in that catalog to reboot. Change the production personal vDisks devices to test devices before creating any test version virtual disk.

SCCM interoperability

When using SCCM and a provisioned device:
• Add the command *C:\Program Files\Citrix\personal vDisk\Bin\CtxPvd.exe* to the shutdown script
• Updates typically require numerous reboots, as a result, you must inventory all provisioned devices each time you reboot or shutdown a device.

About Personal vDisk test devices

Use the information in this section when using Personal vDisk devices in a provisioned environment:
• Personal vDisk devices are either be in test or production mode.
• Citrix Provisioning displays an error message when you try to boot a private or maintenance version with a Personal vDisk device. Only devices without a Personal vDisk disk can boot a private image or maintenance version.
• A virtual disk assignment can be changed in the Citrix Provisioning console using the following methods:
 – Changing the assignment using the device’s properties.
 – Copying and pasting the device’s properties.
 – Dragging and dropping the virtual disk to a collection or a view.
• Citrix Provisioning displays an informational warning when you change the virtual disk assignment for a Personal vDisk device.
• Changing the Personal vDisk device type requires more privileges for the SOAP/Stream Service user:
 – Local administrator privileges on the provisioning server system.
 – Full administrator privileges on the Citrix Virtual Apps and Desktops system, including the database
• When merging, Citrix Provisioning automatically reboots devices. A Personal vDisk device runs an inventory, as needed.
• Citrix recommends that you allocate a small group of Personal vDisk devices for test mode. This group of Personal vDisk devices are kept in maintenance mode when not in use. Otherwise the Citrix Virtual Apps and Desktops power management feature initializes these devices, potentially interfering with the merge process.

Consider:

• this environment is suitable when two catalogs are available, one for PVD test and another for Personal vDisk production devices. If you want to use this feature in an environment where both Personal vDisk test and production devices exist in the same catalog, change a production Personal vDisk device to test. This process causes all devices in that catalog to reboot.
• changing production Personal vDisk devices to test before creating any test versions of a virtual disk.

Assign or reassign a virtual disk to a target device that uses a Personal vDisk

You can assign a different virtual disk to a target device that uses a Personal vDisk if that virtual disk is from the same base (.vhdx) virtual disk lineage. For example, to update an existing virtual disk you can make a copy of the target device’s currently assigned virtual disk. Update the new virtual disk, then assign the updated virtual disk to the device.

To assign or reassign a virtual disk:

1. On the Device with Personal vDisk Properties dialog’s General tab, click Change....
fault, the **Assign vDisk** dialog displays the current vDisks Store location. It also lists all vDisks available from that Store, except for the currently assigned virtual disk.

2. In the **Filter** section, optionally:
 a. Change the Store location from which to select vDisks from.
 b. Filter vDisks that display in the list based on the server's that can deliver them.

3. Select the virtual disk to assign to this target device.

Adding target devices to the database

To create target device entries in the **Citrix Provisioning database**, select one of the following methods:

- Using the console to Manually Create Target Device Entries
- Using Auto-add to Create Target Device Entries
- Importing Target Device Entries

After the target device exists in the database, you can assign a virtual disk to the device. See [*assign a virtual disk to the device*](#) for more details.

Using the console to manually create target device entries

1. In the console, right-click on the **Device Collection** where this target device is to become a member, then select the **Create Device** menu option. The **Create Device** dialog appears.

2. Type a name, description, and the MAC address for this target device in the appropriate text boxes.

 Note:

 If the target device is a domain member, use the same name as in the Windows domain. When the target device boots from the virtual disk, the machine name of the device becomes the name entered. For more information about target devices and Active Directory or NT 4.0 domains, see [*Enabling Automatic Password Management*](#).

3. Optionally, if a collection template exists for this collection, enable the check box next to **Apply the collection template to this new device**.

4. Click the **Add device** button. The target device inherits all the template properties except for the target device name and MAC address.

5. Click **OK** to close the dialog box. The target device is created and assigned to a virtual disk.
Importing target device entries

Target device entries can be imported into any device collection from a .csv file. The imported target devices can then inherit the properties of the template target device that is associated with that collection. For more details, see [Importing Target Devices into Collections](#).

Using the auto-add wizard

The auto-add wizard automates the configuration of rules that automatically add new target devices to the Citrix Provisioning database using the auto-add feature.

The Auto-Add Wizard can be started at the Farm, Site, Collection, or Device level. When started at a level lower than farm, the wizard uses that choice as the default choice. For example, if it is started on a particular target device, it will:

- Select the **Site** for that device as the **Default Site** choice in the combo-box.
- Select the **Collection** for that device as the **Default Collection** choice in the combo-box.
- Select that device as the **Template Device** choice in the combo-box.

The wizard displays each page with choices pre-selected based on the location from which the auto-add wizard was started.

A provisioning farm administrator turns auto-add **on or off** and selects the default site.

A site administrator selects the default site if it is a site in which that administrator controls. If the site administrator is not the administrator of the currently selected default Site, then that administrator can only configure sites to which they have access.

To configure Auto-Add settings (the default collection of a site, template device for the default collection and target device naming rules):

1. On the console, right-click on the farm, then select the **Auto-Add wizard**. The **Welcome to the Auto-Add Wizard** page appears.

2. Click **Next**. The **Enable Auto-Add** dialog appears.

 Note:

 Only a farm administrator can change settings on this page.

3. Check the box next to **Enable Auto-Add** to enable this feature, then click **Next**. The **Select Site** page appears.

 Note:

 Site administrators can only select sites to which they have permissions.
4. From the Site menu, select the site where devices are added, then select Next. The Select Collection page displays with the default collection selected.

5. Accept the default collection or select a different collection from the Collection menu, then click Next. The Select Template Devices page appears.

6. Select the device to use as a template, so that new devices inherit the existing target device’s basic property settings, then click Next.

7. To view the selected device’s properties, click Properties. A read-only dialog displays the selected device’s properties. Close the dialog after reviewing the properties.

8. Click Next. The Device Name page displays.

9. Enter a static prefix that helps identify all devices that are being added to this collection. For example: ‘Boston’ to indicate devices located in Boston.

 Note:
 The prefix can be used with the suffix, but is not required if a suffix is provided. The entire device name can have a maximum of 15 characters (the prefix length + number length + suffix length). For example, the following device names are considered valid:

 - **Boston00Floor2** (prefix, incrementing number length, and suffix provided. The maximum of 15 characters has been reached)
 - **Boston000** (no suffix is provided)
 - **00Floor2** (no prefix is provided)

 The prefix cannot end with a digit.

10. Enter the length of the incrementing number to associate with the devices being added to this collection. This number is incremented as each device is added. For example, if the number length is set to 3, naming starts at 001 and stops naming or adding devices after the number reaches 999.

 Note:
 Enable the Zero fill option to automatically add the necessary number of preceding zeros to a numbers length. For example, if the numbers length is set to ‘4’, then the first target device number would be assigned as ‘0001’.

 The number length must have a minimum of three digits and a maximum of 9 digits.

 Enter a static suffix that helps to identify all devices being added to this collection. For example: Boston00Floor2 might be helpful to indicate the floor where these devices reside.

 The suffix can be used with the prefix, but is not required if a prefix is provided.

 The entire device name can have a maximum of 15 characters (the prefix length + number length + suffix length).
The suffix cannot start with a digit.
The prefix and suffix combination must be unique in each collection.

1. Click Next. The Finish dialog appears.
2. Review all Auto-Add wizard settings, then click Finish. Auto-Add is now configured.

Disabling a target device

The Disable Target Device feature prevents a new target device from booting. Each time a new target device boots with the auto-add option enabled, a new record is automatically created in the database. The following message appears on the target device:

This target device has been disabled. Please Contact your system administrator.

Once contacted, the system administrator can validate the target device. After the administrator disables the option, the target device can boot successfully.

To disable or enable a target device, in the console, right-click on the target device. Select the **Disable or Enable** menu option.

Tip:

To disable all target devices added to a collection, enable the **Disable target device** option on the template target device.

Deleting a target device

To delete a target device:

1. In the Console, right-click on the target devices you want to delete within the collection. Multiple selections can be made in the Details view. Select the **Delete** menu option.
2. Click Yes to confirm the delete request. The target device is deleted from the collection and any associated views. However, the virtual disk image file for the target device still exists.

Improving performance with asynchronous I/O streaming

In Citrix Provisioning releases before version 1808, a target device served incoming operating system storage requests by traversing through three different layers: RAM cache, VHDX file, and network streaming. This process occurred sequentially to complete a request. This traversing led to less than optimal performance due to the latency introduced when waiting for sub-I/O completion, before submitting a new sub-I/O request.
Target devices support asynchronous I/O in all three layers of the provisioning model: RAM cache, the VHDX file, and network streaming, effectively improving performance.

Important:

Asynchronous I/O streaming provides better performance, but comes with higher, temporary memory consumption. Citrix recommends that you test this feature in a non-production environment to verify that the performance is favorable before deploying to production.

The following virtual disk cache modes support asynchronous I/O:

- Private or maintenance mode
- Cache in device RAM with overflow on hard drive
- Cache on server persistent

Enable asynchronous I/O using the provisioning console

This release improves asynchronous I/O streaming functionality by allowing you to enable it for a virtual disk directly from the Provisioning Console. In the virtual disk properties screen, select **Asynchronous IO**.
Creating vDisks

May 14, 2019

Use the information in this article to create a base virtual disk image.

A virtual disk acts as a hard disk for a target device and exists as disk image files on a Citrix Provisioning server or on a shared storage device. A virtual disk consists of a VHDX base image file, any associated properties files, such as a .pvp file and if applicable, a chain of referenced VHDX differencing disks, .avhdx.

When creating a virtual disk image file, keep the following in mind:

- Create as many virtual disk image files as needed, as long as you have enough space available on the provisioning server. Ensure that you have enough available space on the storage device containing the virtual disk image files.
- Virtual disk files use FAT (File Allocation Table) or NTFS (New Technology File System) file systems for Microsoft operating systems.
- Depending upon the file system used to store the virtual disk, the maximum size of a VHDX file (virtual disk) is 2 terabytes (NTFS) or 4,096 MB (FAT).
- A virtual disk can be shared (Standard Image) by one or more target devices, or it can exist for only one target device to access (Private Image).

The first stage in the lifecycle of a virtual disk is creating one. Creating a virtual disk requires preparing the master target device for imaging. Once the image is prepared, create and configure a virtual disk file where the virtual disk resides. Image the master target device to that file. These steps result in a new base virtual disk image. This process can be performed automatically, using the Imaging Wizard, or manually. Citrix Provisioning includes an option to create a common image for a single target platform or for use with multiple target platforms.

Note:
Your administrative role determines what information is displayed and tasks performed in the Citrix Provisioning console. For example, view and manage virtual disks in sites in which you are a site administrator. However, unless the farm administrator sets a site as the owner of a store, the site administrator cannot perform store management tasks.

Tip:
Citrix Provisioning only supports automated virtual disk capture. More steps require a virtual disk attached to the machine being captured, ensuring that a P2PVS switch can be used with P2PVS or the imaging wizard. Use automation steps to accommodate such scenarios.

The following provides an overview of the steps necessary to create a virtual disk automatically and manually.
Automatically creating a virtual disk image using the imaging wizard

Using the Imaging Wizard is the recommended method for creating virtual disk images.

Note:

The master target device, physical or virtual, is prepared by installing and configuring the operating system. Also, configure applications in the base virtual disk image. For details, see Preparing the Master Target Device.

To image the master target device, run the Imaging Wizard to automatically create a virtual disk file on a server or shared storage. After running the Wizard, image the master target device to that file.

Manually creating a virtual disk file then creating the image using Provisioning Services imaging

This process is the optional method used to create virtual disk images.
1. Prepare the master target device, physical or virtual, by installing and configuring the operating system. Prepare applications in the base virtual disk image. A virtual disk file is then created on a provisioning server or shared storage. Access it using any server providing the virtual disk. The file must be mounted, formatted, then unmounted manually using the console or from the target device.

 Note:
 In the Citrix Provisioning console, a new virtual disk file can be created by right-clicking on the vDisk Pool or the Store, and then selecting the Create new vDisk menu option. Once created, vDisks display in the details pane when a site’s virtual disk pool is selected, or when a store in the farm is selected.

2. The master target device is imaged to the new virtual disk file using the Citrix Provisioning imaging utility.

 Note:
 The imaging utility converts a server or desktop workload from an online physical machine running Windows to a XenServer virtual machine or provisioned virtual disk. The imaging utility converts a server or desktop workload from an offline virtual machine or disk, containing any guest operating system, to a XenServer VM.
Creating virtual disk files manually

The following procedure describes how to manually create a virtual disk file:

1. In the **console** tree, right-click on the **vDisk Pool** in the site where you want to add vDisks, then select the **Create vDisk** menu option. The **Create vDisk** dialog appears.

2. If you accessed this dialog from the site’s virtual disk pool, in the menu, select the Store where this virtual disk resides. If you accessed this dialog from the store, from the menu, select the site where this virtual disk is added.

3. In the **Server used to create the vDisk** menu, select the provisioning server that creates the virtual disk.

4. Type a file name for the virtual disk. Optionally, type a description for this new virtual disk in the description textbox.

5. In the **Size** text box, scroll to select the appropriate size to allocate for this virtual disk file. If the disk storing the virtual disk images is formatted with NTFS, the limit is approximately 2 terabytes. On FAT file systems, the limit is 4,096 MB.

6. In the **VHDX Format** text box, select the format as either **Fixed** or **Dynamic** (2,040 GB for VHDX emulating SCSI; 127 GB for VHDX emulating IDE). If the VHDX format is Dynamic, from the **VHDX block size** menu, select the block size as either 2 MB or 16 MB.

7. Click **Create vDisk**, a progress dialog opens. Depending on the disk size and other factors, it takes several minutes or more to create the virtual disk. After the virtual disk is successfully created, it displays in the Citrix Provisioning console's details pane and is ready to be formatted.

8. Right-click on the virtual disk in the Console, then select **Mount vDisk**. The virtual disk icon displays with an orange arrow if mounted properly.

A virtual disk image cannot be assigned to, or boot from a target device until that target device exists in the Citrix Provisioning database. After creating the target device, in the **Console**, select the **Hard Disk boot** option.

About the common virtual disk image feature

The Common Image feature allows a single virtual disk to simultaneously support multiple target device platforms, greatly reducing the number of vDisks an administrator must maintain. The procedure for creating a common image depends on the target device platform.

Supported target device platforms include:

- A combination of XenServer VMs and physical devices (virtual-to-virtual and virtual-to-physical). For details, see vDisks.
- Multiple types of physical devices (different motherboards, network cards, video cards, and other hardware devices). For details, see Creating a Common Image for use with Multiple Physical Device Types.
• Blade servers. For details, see vDisks.

Create common images for use with XenServer VMs and physical devices, or blade servers

XenServer Platinum Edition enables the provisioning of physical and virtual servers from the same workload image.

Prerequisites:
• Appropriate XenServer Platinum Licensing.
• Support for PXE on the local network.
• DHCP must be installed and configured on the local network.

Select from the following target device platforms:
• Create a common image that boots from a physical or virtual server.
• Create a common image that boots from a blade server.

Create a common image that boots from a physical or virtual server

To create a common image that boots from a physical or virtual machine, complete the procedures as follows.

Prepare the master target device

Install a supported Windows Operating System with the latest patches and device drivers on a physical machine. This physical machine serves as the master target device.

Install the Citrix Provisioning Target Device Software

1. Log on to the master target device as a domain administrator, or a domain user (with local install privileges).
2. Install the Citrix Provisioning server target device software on the physical machine.
3. Follow the onscreen prompts by selecting installation default settings.
4. When prompted, reboot the master target device from the hard disk drive.

Install XenConvert software

Download XenConvert software and installation instructions from either the Citrix Provisioning product download site or the XenServer product download site.

After successfully installing XenConvert on the target device:

1. Run XenConvert on the target device to convert the physical machine into a XenServer VM.
2. Set the VM’s vCPU setting to be the same as the physical system’s vCPU setting.

 Note:
 This step is important for NT5 OS.

3. Change the XenServer VM MAC (it is using the physical system’s MAC address of the NIC), or remove the NIC to add a new one.

4. Boot the XenServer VM.

Install XenServer tools

1. Log on to the master target device as a domain administrator, or a domain user (with local install privileges).
2. Run windows-pvdrivers-xensetup.exe, which can be downloaded from on the XenServer Product installation CD or product download site. The Citrix XenServer Windows Tools Setup warning dialog appears.
3. Click Yes to continue the install.
4. Follow the onscreen prompts and select the default settings. At the Choose Install Location dialog box, click Install.
5. When prompted by Windows Plug and Play dialogs, select the option to find drivers automatically.
6. When prompted select Yes for any unsigned driver dialog.
7. When prompted, reboot the master target device.
8. Verify that Citrix Provisioning successfully binds to the XenServer NIC and the physical systems NIC.

Image the Provisioning Server master target device

Use either the Citrix Provisioning Imaging Wizard or XenConvert to create the XenServer virtual disk image. When creating the virtual disk image, you must select to optimize target device settings. Otherwise the VM fails to boot.

After successfully creating the XenServer virtual disk image, boot both the physical and virtual machines in standard image mode.

For details on using the Citrix Provisioning Imaging Wizard, see Using the Imaging Wizard. For details on using XenConvert to create the XenServer virtual disk image, see XenConvert product documentation on the Citrix Provisioning or XenServer product download site.
Create a common image that boots from a blade server

To create a common image using the common hard drive method that boots from heterogeneous Blade servers, complete the following steps:

1. Use the Console to create a virtual disk file.
2. Log on to the blade server to create a system:
 a. Install the OS on the new machine.
 b. Install HP System Pack. This process installs all drivers.
 c. Install all necessary Windows updates.
 d. Install Citrix Provisioning target device software.
3. PXE boot from the new system’s hard disk drive, then verify that the system can recognize the virtual disk. The virtual disk is shown from “My Computer” as a partition.
4. Physically move the HDD or HDDs in a RAID system to the other system (usually the older system).
5. Boot from the new systems hard disk drive.
6. After Windows installs the driver’s, reboot when prompted.
7. Verify that NIC drivers installed correctly.
8. PXE boot from the hard disk drive on the second system.
9. Use either the Citrix Provisioning Imaging Wizard or XenConvert to create the virtual disk image.
10. After imaging completes, shut down the system.
11. Set both systems to boot from the virtual disk.
12. On the Citrix Provisioning console, change the virtual disk mode to standard cache on local hard disk drive.

Create a common image for use with multiple physical device types

Using the common NIC method, a single virtual disk can simultaneously support different motherboards, network cards, video cards, and other hardware devices. The result is a virtual disk capable of being used by heterogeneous target devices, greatly reducing the number an administrator must maintain. Use the information in this article to create a common image for physical devices.
Prerequisites

- Make sure all target devices using the common image have a consistent HAL; they must have the same number of logical processors.

 Tip:

 A single processor, hyper-threading capable system is considered to have two logical processors when hyper-threading is enabled in the BIOS.

- The BIOS structure, presented to the OS during the boot process, must be of the same format for all target devices that share a Standard Image. BIOS structure contains a list of all the components connected to the motherboard so that the appropriate drivers are loaded. This configuration allows the components to function properly.

- Have either a 3Com Managed PC Boot Agent (MBA) or a PXE-compliant NIC available. This card is the common NIC that is inserted into each target device during the Common Image build process.

- Install all the latest device drivers on each target device.

- Device drivers are missing if devices do not respond after you configure the common image. For example, if a target device's USB mouse and keyboard do not respond after you assign the common image to the target device, the drivers for that target device's chipset have not been installed. Go to device manager and check to insure no yellow exclamation mark appears on any devices, especially USB root HUBs and controllers.

- Determine which target device contains the latest motherboard chipset. This target device is used as the first target device in the common image build process. The latest Intel chipset driver contains all the drivers for the previous chipset. It is not necessary to install as many drivers when you build the common image.

- Except on the first target device, disable built-in NICs on all target devices using the common image. Leave the built-in NIC on the first target device enabled. Disabling the NICs prevents confusion about which NIC to use during the common image building process.

- Install Citrix Provisioning components.

Building the common image

To build a common image:

- Configure the master target device
- Export specific data files
- Boot the master target device
- Add extra target devices to the common image
Important:
When building the common image, create a virtual disk that has enough space to accommodate additional information added by the common image build process.

Configuring the master target device

1. Insert the common NIC into the Master Target Device.
2. Install the target device software on the Master Target Device. Select both the common NIC and built-in NICs during the installation process.
3. Create a virtual disk, then mount, format, and unmount it. Create a virtual disk that has enough space to accommodate additional information added by the common image build process.
4. Run the Imaging Wizard on the target device to build the virtual disk.
5. Citrix recommends making a copy of the original virtual disk created in Step 3 and save it in the virtual disk directory on the provisioning server.
6. On the first target device, copy CIM.exe from C:\Program Files\Citrix\Provisioning Services to a removable storage device, such as a USB flash drive. This utility is used to include disparate target devices in the common image.
7. Shut down the Master Target Device and remove the common NIC.

Exporting specific data files

1. Insert the common NIC into a target device added to the common image, then boot the target device from its local hard drive.

 Note:
 Although the Windows OS must be installed on this target device, the target device software does not have to be installed.

2. Copy CIM.exe from the removable storage device to this target device.
3. At a command prompt, navigate to the directory in where CIM.exe is located. Run the following command to extract the information from the target device into the .dat file:

 CIM.exe e targetdeviceName.dat

 where targetdeviceName identifies the first target device that uses the common image. For example, TargetDevice1.dat.

 Copy the .dat file created in Step 3 to the removable storage device.
4. Shut down the target device and remove the common NIC.
Note:
To include more target devices with disparate hardware in the common image, repeat this procedure for each device, giving each .dat file a unique name.

Booting the master target device

1. Reinsert the common NIC into the Master Target Device. Insert the NIC into the same slot from which it was removed during the Configuring the Master Target Device procedure. Before booting the Master Target Device, enter the BIOS setup and verify that the common NIC is the NIC used in the boot process.

2. Using the common NIC, boot the Master Target Device from the virtual disk, in Private Image mode.

3. Copy the CIM.exe and the .dat file associated with the first target device from the removable storage device to the master target device.

4. At a command prompt, navigate to the directory where the CIM.exe and the .dat file are located.

5. Run the following command to merge the information from the .dat file into the common image:

   ```
   CIM.exe m targetdeviceName.dat
   ```

6. Shut down the Master Target Device.

Adding more target devices to the common image

1. Insert the common NIC into more target devices included in the Common Image. Insert the NIC into the same slot from which it was removed in the Exporting Specific Data Files procedure.

2. Using the common NIC, boot the target device off the virtual disk in Private Image mode.

3. Allow Windows time to discover and configure all the device drivers on the target device. If prompted by the “Found New Hardware Wizard” to install new hardware, cancel the wizard and proceed to Step 4.

 Note:
 Sometimes, Windows can’t install drivers for the built-in NIC on a target device, and the drivers cannot be installed manually. The common NIC and the target device’s built-NIC are similar to each other. As a result, the driver installation program tries to update the driver for both NICs. For example, if the common NIC is an Intel Pro 100/s and the target device’s built-in NIC is an Intel Pro 100+. To resolve this conflict, open System Properties. On the Hardware tab, click the Device Manager button. In the Device Manager list, right-
click the built-in NIC and click **Update Driver** to start the Hardware Update Wizard. Choose **Install** from a list or specific location and specify the location of the NIC’s driver files.

4. Open **Network Connections**. Right-click the connection for the built-in NIC and click **Properties** in the menu that appears. The icon for the built-in NIC is marked with a red X.

5. Under **This connection uses the following items**, select **Network Stack** and click **OK**.

6. From a command prompt, run the following command:

   ```
   C:\Program Files\Citrix\ Provisioning Server\regmodify.exe
   ```

 Note:
 After completing Steps 4–6, reboot the target device and allow Windows to discover and configure any remaining devices. If prompted by the “Found New Hardware Wizard” to install new hardware, proceed through the Wizard to complete the hardware installation.

7. Using the original virtual disk, repeat Step 1 through Step 6 for each of the additional target devices you want to include in the Common Image.

8. Once target devices have been included in the **Common Image**, open the **Console**. Set the disk access mode for the Common Image virtual disk to **Standard Image** mode, then boot the devices.

Deployments using Device Guard

Device Guard represents a combination of enterprise and software security features. It can be used to provide a highly secure environment which allows you to configure systems so that only trusted applications can be used. See the Microsoft site for more information about Device Guard deployments.

When using Device Guard, consider the following:

- Device Guard is a property of an individual VM. This functionality is configured on the Hyper-V host where the VM resides, after the VM is created.
- Enable Device Guard in the master image prior creating the image. Once enabled, you can image the virtual disk.

Also:

- See the Microsoft documentation site to configure **Device Guard**.
- See the Microsoft documentation site to **configure nested virtualization**.
- Once the virtual disk is created, use the Citrix Virtual Apps and Desktops Setup Wizard to provision the VMs.
- Once the VMs are provisioned, manually enable nested virtualization for each VM on the Hyper-V host on which it has been provisioned.
Tip:
Citrix Provisioning supports Device Guard using Hyper-V 2016 with targets running Windows 10 or Windows 2016.

Configuring virtual disks for Active Directory management

May 14, 2019

Integrating Citrix Provisioning and Active Directory allows administrators to:

- Select the Active Directory Organizational Unit (OU) for the Citrix Provisioning target device computer account.
- Take advantage of Active Directory management features, such as delegation of control and group policies.
- Configure the Citrix Provisioning server to automatically manage the computer account passwords of target devices.

Before integrating Active Directory within the farm, verify that the following prerequisites are met:

- The master target Device was added to the domain before building the virtual disk.
- The **Disable Machine Account Password Changes** option was selected when the running the image optimization wizard.

After all prerequisites have been verified, new target devices can be added and assigned to the virtual disk. A machine account is then created for each target device.

Managing domain passwords

When target devices access their own virtual disk in Private Image mode, there are no special requirements for managing domain passwords. However, when a target device accesses a virtual disk in standard image mode, the provisioning server assigns the target device its name. If the target device is a domain member, the name and password assigned by server must match the information in the corresponding computer account within the domain. Otherwise, the target device is not able to log on successfully. For this reason, the provisioning server must manage the domain passwords for target devices that share a virtual disk.

To enable domain password management you must disable the Active Directory-(or NT 4.0 Domain) controlled automatic renegotiation of machine passwords. This process is done by enabling the **Disable machine account password changes** security policy at either the domain or target-device level. The provisioning server provides equivalent functionality through its own **Automatic Password Renegotiate** feature.
Target devices booted from virtual disks no longer require Active Directory password renegotiation. Configuring a policy to disable password changes at the domain level applies to any domain members booting from local hard drives. If policies disabling password changes are not desirable for your environment, disable machine account password changes at the local level. To disable machine account password changes, select the **Optimize** option when building a virtual disk image. The setting is applied to any target devices that boot from the shared virtual disk image.

Note:
The Citrix Provisioning server does not in any way change or extend the Active Directory schema. The provisioning server’s function is to create or modify computer accounts in Active Directory, and reset passwords.

When domain password management is enabled, it:

- Sets a unique password for a target device.
- Stores that password in the respective domain computer account.
- Gives the information necessary to reset the password at the target device before it logs on to the domain.
With password management enabled, the domain password validation process includes:

- Creating a machine account in the database for a target device, then assign a password to the account.
- Providing an account name to a target device using the Streaming Service.
- Having the domain controller validate the password provided by the target device.
Enabling domain management

Each target device that logs on to a domain requires a computer account on the domain controller. This computer account has a password maintained by the Windows desktop OS and is transparent to the user. The password for the account is stored both on the domain controller and on the target device. If the passwords stored on the target device and on the domain controller do not match, the user cannot log on to the domain from the target device.

Domain management is activated by completing the following tasks:

- Enabling Machine Account Password Management
- Enabling Automatic Password Management

Enabling machine account password management

To enable machine account password management, complete the following:

1. Right-click on a virtual disk in the Citrix Provisioning console, then select the File Properties menu option.
2. On the Options tab, select Active Directory machine account password management.
3. Click OK, then close the properties dialogs, then restart the Streaming Service.

Enabling automatic password management

If your target devices belong to an Active Directory domain and are sharing a virtual disk, complete the following extra steps.

To enable automatic password support, complete the following:

1. Right-click on a provisioning server in the console, then select the Properties menu option.
2. Select the Enable automatic password support option on the Options tab.
3. Set the number of days between password changes.
4. Click OK to close the Server Properties dialog.
5. Restart the Streaming Service.

Managing domain computer accounts

The tasks documented here must be performed using the Citrix Provisioning server, rather than in Active Directory, to take full advantage of product features.
Supporting cross-forest scenarios

To support cross-forest scenarios:

- Ensure that DNS is properly set up. See the Microsoft website for information on how to prepare DNS for a forest trust.
- Ensure the forest functional level of both forests is the same version of Windows Server.
- Create the forest trust. To create an account in a domain from another forest, create an Inbound Trust from the external forest to the forest where Citrix Provisioning resides.

Parent-child domain scenario

Common cross-domain configurations involve having the Citrix Provisioning server in a parent domain with users from one or more child domains. These users can administer Citrix Provisioning and manage Active Directory accounts within their own domains.

To implement this configuration:

1. Create a Security Group in the child domain; it can be a Universal, Global, or Local Domain Group. Make a user from the child domain a member of this group.
2. From the provisioning server console, in the parent domain, make the child domain security group a Citrix Provisioning Administrator.
3. If the child domain user does not have Active Directory privileges, use the Delegation Wizard in the Active Directory Users & Computers Management Console. Use this method to assign, create, and delete a user’s computer account rights for the specified OU.
4. Install the Citrix Provisioning Console in the child domain. No configuration is necessary. Log into the provisioning server as the child domain user.

Cross-forest configuration

This configuration is similar to the cross-domain scenario. However, in this configuration the Citrix Provisioning console, user, and administrator group are in a domain that is in a separate forest. The steps are the same as for the parent-child scenario, except that a forest trust must be established first.

Note:

Microsoft recommends that administrators do not delegate rights to the default Computers container. The best practice is to create accounts in the OUs.
Giving access to users from another domain Provisioning Services administrator privileges

Citrix recommends the following method:

1. Add the user to a Universal Group in their own domain (not the Citrix Provisioning Domain).
2. Add that Universal Group to a Local Domain Group in the Citrix Provisioning domain.
3. Make that Local Domain Group the Citrix Provisioning Admin group.

Adding target devices to a domain

Note:
The machine name used for the virtual disk image must not be used again within your environment.

1. Right-click on one or more target devices in the Console window. You can alternatively right-click on the device collection itself to add all target devices in this collection to a domain. Select Active Directory, then select Create machine account. The Active Directory Management dialog appears.
2. From the Domain scroll list, select the domain that the target device belongs to. Or, in the Domain Controller text box, type the name of the domain controller that the target devices are added to. If you leave the text box blank, the first Domain Controller found is used.
3. From the Organization unit (OU) scroll list, select, or type the organization unit to which the target device belongs. The syntax is ‘parent/child,’ lists are comma separated. If nested, the parent goes first.
4. Click the Add devices button to add the selected target devices to the domain and domain controller. A status message displays to indicate if each target device was added successfully. Click Close to exit the dialog.

Removing target devices from a domain

1. Right-click on one or more target devices in the console window. Alternatively, right-click on the device collection itself to add all target devices in this collection to a domain. Select Active Directory Management, then select Delete machine account. The Active Directory Management dialog appears.
2. In the Target Device table, highlight those target devices that are removed from the domain, then click the Delete Devices button. Click Close to exit the dialog.

Reset computer accounts
To reset computer accounts for target devices in an Active Directory domain:

1. Right-click on one or more target devices in the Console window. Alternatively right-click on the device collection itself to add all target devices in this collection to a domain. Then select **Active Directory Management**, then select **Reset machine account**. The **Active Directory Management** dialog appears.

2. In the **Target Device** table, highlight those target devices to reset, then click the **Reset devices** button.

 Note:

 Add this target device to your domain while preparing the first target device.

3. Click **Close** to exit the dialog.

4. Disable Windows Active Directory automatic password renegotiation. To disable automatic password renegotiation on your domain controller, enable the following group policy: Domain member: Disable machine account password changes.

 Note:

 To make this security policy change, you must have sufficient permissions to add and change computer accounts in Active Directory. You have the option of disabling machine account password changes at the domain level or local level. If you disable machine account password changes at the domain level, the change applies to all members of the domain. If you change it at the local level (by changing the local security policy on a target device connected to the virtual disk in Private Image mode), the change applies only to the target devices using that virtual disk.

5. Boot each target device.

Active directory-based activation

Update how Microsoft Volume Licensing is configured for an individual virtual disk using Active Directory-based activation. With this functionality you can specify that the virtual disk uses no volume licensing.
Note:

When using the Microsoft Volume Licensing for a virtual disk, consider that Key Management Services (KMS), Multiple Activation Key (MAK) and Active Directory-based activation (ADBA) cannot be used together.

To improve active directory-based activation:

1. In the virtual disk Property screen, set the virtual disk Microsoft Licensing property to **None**.
2. On the target device, use `slmgr-dlv` for a Microsoft image, and `cscript ospp.vbs/dstatus` for a Microsoft Office image.

Tip:

A known issue exists where VAMT displays errors about duplicate CMID entries for ADBA activated devices. This issue occurs although ADBA does not utilize CMID. ADBA, despite being similar to KMS, does not use CMID. Microsoft reuses KMS data when compiling CMID information. The following image illustrates a VAMT tool screen for ADBA. The Duplicate Client Machine ID report displays conflicts for duplicate CMID entries for those devices.
Assigning virtual disks to target devices

May 14, 2019

Assign a virtual disk to a single target device or to all devices within a target device collection. If a target device has more than one virtual disk assigned to it, a list of disks appears at boot time. This process allows you to select the appropriate virtual disk to boot.

If one or more virtual disk versions exist, the version target devices use in Production is either the highest numbered production version or an override version. For details see Accessing a virtual disk Version. Maintenance and Test devices with non-production versions are labeled appropriately.

A virtual disk cannot be assigned to a target device using drag if that target device was assigned a personal vDisk using the Citrix Virtual Apps and Desktops Setup Wizard. A message dialog displays if a virtual disk is dragged and dropped onto a collection containing one or more target devices using personal vDisks. The dialog provides the option to continue by acknowledging that the virtual disk is assigned to those devices that are not currently assigned a Personal vDisk. Also, target devices using personal vDisks cannot inherit the properties of a target device that fail to use a Personal vDisk (copy/paste). To reassign a virtual disk to a target device that uses a Personal vDisk, see Configure target devices that use personal vDisks.

Assigning vDisks to a target device

vDisks can be assigned to a single target device using:
To assign a virtual disk, using drag, to one or all target devices within a collection:

1. In the Citrix Provisioning console tree, expand the virtual disk Pool within a given site. Or, alternately expand Stores to display the assigned virtual disk in the right pane of the window.
2. Left-click and hold the mouse on the virtual disk, then drag it onto the target device or onto the collection.

To assign one or more vDisks to a single target device from the Target Device Properties dialog:

1. In the Citrix Provisioning console tree, expand the Device Collections folder, then click the collection folder where this target device is a member. The target device displays in the details pane.
2. Right-click on the target device, then select Properties. The Target Device Properties dialog appears.
3. On the General tab, select the boot method that this target device uses from the Boot from menu options.
4. On the vDisks tab, select the Add button within the virtual disk for this Device section. The Assign vDisks dialog appears.
5. To locate assignable vDisks for this target device, select a specific store or server. These stores or servers are located under the Filter options. You can alternately accept the default setting, which includes All Stores and All Servers.
6. In the Select the desired vDisks list, highlight the vDisk(s) to assign, then click OK, then OK again to close the Target Device Properties dialog.

Using the Manage Boot Devices utility

May 14, 2019

The Manage Boot Devices Utility is an optional method for providing IP and boot information (boot device) to target devices. It is an alternative to using the traditional DHCP, PXE, and TFTP methods. When the target device starts, it obtains the boot information directly from the boot device. With this information, the target device is able to locate, communicate, and boot from the appropriate Citrix Provisioning server. After user authentication, the server provides the target device with its virtual disk image.

Tip:
A problem occurs when booting a target device using the Boot ISO method. See the Citrix Knowledge Center for more information.

The following boot devices are supported:

- USB
- CD-ROM (ISO)
- Hard Disk Partition

Wireless NICs are not supported.

Warning:

When selecting an entire hard drive as a boot device, all existing disk partitions are erased and re-created with a single active partition. The targeted partition is reserved as a boot device, and is not used by the operating system or by data.

When a hard disk partition is selected as boot device, the selected disk partition data is deleted and set as an active partition. This active partition becomes the boot device.

Configuring boot devices

Boot devices are configured using the Boot Device Management utility. This wizard-like application enables you to quickly program boot devices.

After installing the boot device, complete the procedures that follow. Consider the following:

- The virtual disk must be previously formatted and ready before running BDM.exe.
- If you are using the target device hard disk drive as the boot device, copy BDM.exe from the product installation directory on the server, into the product installation directory on the target device.
- The target device settings in the Citrix Provisioning console are set to boot from the virtual disk. The actual device is set to boot from hard disk first.

1. From the Citrix Provisioning product installation directory, run BDM.exe. The Boot Device Management window opens and the Specify the Login Server page appears.
2. Under Server Lookup, select the radio button that describes the method to use to retrieve Provisioning Server boot information:
 - Use DNS to find the Provisioning Server from which to boot. If this option is selected and the Use DHCP to retrieve Device IP option is selected your DHCP server must be configured to provide the DNS Server.
 - **Note:** The boot device uses Host name plus DHCP option 15 (Domain Name, which is optional) as the FQDN to contact the DNS server to resolve the IP address.
 If you are using high availability, specify up to four Provisioning Servers for the same host name on your DNS server.
• Use the static IP address of the Provisioning Server from which to boot. If you select this option, click Add to enter the following Provisioning Server information:
 – IP Address
 – Port (default is 6910)

In high availability implementations, enter up to four Citrix Provisioning servers. If you are not using high availability, enter only one. Use the Move Up and Move Down buttons to sort the Provisioning Servers boot order. The first provisioning server listed is the server that the target device attempts to boot from.

3. Click Next. The Set Options dialog appears.
4. Configure the following local boot options, then click Next:
 • Verbose Mode. Enable/disables the displaying of extensive boot and diagnostic information. Verbose mode can be helpful when debugging issues.
 • Interrupt Safe Mode; enable/disable for debugging issues. This mode is sometimes required for drivers that exhibit timing or boot behavior problems.
 • Advanced Memory Support. Enables/disables the address extensions, to match your operating system settings. This option is enabled by default. Disable it only if your target device is hanging or behaving erratically in early boot phase.
 • Network Recovery Method. Use this method to restore the network connection or to reboot from a hard drive if the target device loses connection to the Provisioning Server. Specify how long (in seconds) to wait to make this connection.
 • Login Polling Timeout; in general, start with values of one second for each of the polling and general timeouts. Extend the login polling timeout when using 3DES encryption. Further extend the timers based on workload. A reasonable setting for 100 target devices running triple DES in the network would be three seconds.
 • Login General Timeout; a reasonable setting for 100 target devices running triple DES in the network would be 10 seconds for the General Timeout.

5. In the Burn the Boot Device dialog, configure the target device IP. If the Use DNS to find the Server option is selected and your DHCP service does not provide option 6 (DNS Server), enter the following required information:
 • Primary DNS Server Address
 • Secondary DNS Server Address
 • Domain Name

6. Configure the Boot Device properties.
 • Add an active boot partition. Use this option to add a boot partition. Note: A boot partition is required if you are booting from the device’s hard drive. For example, when selecting a XENPVDISK boot device with small partition or partition offset.
 • Select the boot device from the list of devices.
 If a partition offset size is set, you are prompted to confirm the destination size. Type Yes (case sensitive) to continue.
7. If applicable, configure Media Properties.
8. Click Burn. A message appears to acknowledge that the boot device was successfully created. If selecting ISO format, use your CD burning software to burn the ISO image.
9. Click Exit to close the utility.
10. Boot the target device and enter the BIOS Setup. Under the Boot Sequence, move the boot device to the top of the list of bootable devices. Save the change, then boot the target device.

After the boot device is programmed, configure a target device boot sequence using the console's Target Device Disk Properties dialog. These boot behaviors are used after a target device connects to a provisioning server. The console allows multiple virtual disk images to be assigned to a target device. How this vDisks boot depends upon the selected boot behavior.

When configuring the BIOS to for the boot device (either USB or ISO image), the NIC PXE option must be enabled. The PXE boot option is required in order for the NIC Option ROM to stay resident in memory during the pre-boot process. This way, UNDI is available to the boot device to properly initialize the NIC. Otherwise, the boot device displays the 'API not found' message.

Export Devices Wizard

June 12, 2019

This release of Citrix Provisioning includes a new wizard in the provisioning console. The Devices Export Wizard exports existing provisioned devices to the Citrix Virtual Apps and Desktops Delivery Controller. This Wizard augments the existing import functionality from Citrix Studio’s Machine Creation Wizard.

Note:

Instead of importing devices from Citrix Studio, devices are exported to the Delivery Controller using the remote PowerShell SDK for the Citrix Cloud Delivery Controller. For on-premises deployments, the Citrix Virtual Apps and Desktops Delivery Controller SDK is used. The Devices Export Wizard is the preferred method for adding existing devices in your Citrix Provisioning farm to a Citrix Virtual Apps and Desktops Delivery Controller.

Requirements

The following elements are required for the Export Devices Wizard on Citrix Cloud deployments:

- Citrix Virtual Apps and Desktops DDC in Citrix Cloud. The DDC has its own database where Citrix Provisioning devices are added to the catalog.
• Citrix Cloud Connector located on-premises. Used for setting up Citrix Cloud, this connector acts as the relay between Citrix Cloud and the on-premises resource location. The connector is used by the Citrix Virtual Apps and Desktops Remote PowerShell SDK to communicate with Citrix Cloud.

• Citrix Provisioning console version 1906. The updated console uses the Citrix Virtual Apps and Desktops remote PowerShell SDK to add existing Citrix Provisioning devices to the Citrix Virtual Apps and Desktops DDC.

• Citrix Provisioning server version 1906. This server communicates with the on-premises hypervisors and database and makes SOAP calls to MAPI.

The following elements are required for the Export Devices Wizard on-premises deployments:

• Citrix Provisioning console. The console uses the Citrix Virtual Apps and Desktops Delivery Controller SDK to add existing Citrix Provisioning devices to the Citrix Virtual Apps and Desktops Delivery Controller catalog.

• Citrix Provisioning server version 1906. This server communicates with the on-premises hypervisors and database and makes SOAP calls to MAPI.

• Citrix Virtual Apps and Desktops Delivery Controller for on-premises setup.

Important considerations

Consider the following when using the Export Devices Wizard:

• The Devices Export Wizard Summary page displays the number of devices that are exported to the Citrix Virtual Apps and Desktops Delivery Controller. This page displays this information even if devices fail to export. The Summary page displays how many device records were created and how many failed. The names of the failed devices can be found in the CDF trace. To export devices that failed earlier, rerun the Devices Export Wizard. Select the same collections. Add them to the existing Citrix Virtual Apps and Desktops catalog, or create a catalog to add them.
• Devices can only be exported to a single Citrix Cloud customer during a single execution of the wizard. If the Citrix Cloud user has multiple cloud customers to manage, and changes occur during the execution of the wizard process, close the wizard and start it again. Use this process to change the Citrix Cloud customer.

• Existing provisioned Nutanix devices cannot be exported to Citrix Cloud because a Nutanix VM MAC address cannot be obtained. This limitation is similar to the behavior of the machine creation wizard in the Citrix Studio. To add a Nutanix device to the Citrix Cloud Delivery Controller, create a device using the Citrix Virtual Apps and Desktop Setup Wizard on Citrix Provisioning console.
Architecture

The following image illustrates elements comprising the Citrix Cloud architecture as part of the new Devices Export Wizard functionality.

Note:

The on-premises configuration remains unchanged. The Devices Export Wizard functions with the on-premises Citrix Virtual Apps and Desktops Delivery Controller.

The wizard:

- runs on the Citrix Provisioning console and adds existing provisioned devices to the Citrix Cloud Delivery Controller.
- uses SOAP and MAPI calls to interact with the Citrix Provisioning server to retrieve information on existing provisioned devices.
- interacts with the Citrix Virtual Apps and Desktops remote PowerShell SDK to communicate with the Citrix Cloud Delivery Controller to add provisioned devices to the machine catalog.
Using the devices export wizard

Use the information in this section to install elements required for Devices Export Wizard functionality.

Important:
For on-premises deployments, the Citrix Virtual Apps and Desktops Delivery Controller is unmodified. No further installation or configuration changes are required. The Citrix Provisioning console installer, version 1906, provides all the necessary components required to use the Export Devices Wizard.

For Citrix Cloud deployments:

1. Install the Citrix Cloud Connector.
2. Upgrade Citrix Provisioning to version 1906 (or later).
3. Uninstall the Citrix Virtual Apps and Desktops Delivery Controller SDK from your Citrix Provisioning console. Perform this task by uninstalling each of the following snap-ins: Citrix Broker PowerShell snap-in, Citrix Configuration Logging Service PowerShell snap-in, Citrix Configuration Service PowerShell snap-in, Citrix Delegated Administration Service PowerShell snap-in, and Citrix Host Service PowerShell snap-in.
4. Download and install the Citrix Virtual Apps and Desktops Remote PowerShell SDK on the Citrix Provisioning console.

Important:
Install the Citrix Virtual Apps and Desktops Remote PowerShell SDK from the command line and provide the PVS=YES argument.

For information about provisioning in Citrix Cloud, see Citrix Provisioning managed by Citrix Cloud. For more information about installations related to Citrix Cloud deployments, see Using PVS with the Citrix Cloud Apps and Desktop Service.

To launch the Devices Export Wizard:

1. In the Citrix Provisioning console, click the Sites node.
2. Right-click the Site you want to configure, and right-click to expose a contextual menu.
3. In the context menu, click Export Devices Wizard.
The **Export Devices Wizard** screen appears.

4. Click **Next** to start the wizard.
5. Enter the Citrix Virtual Apps and Desktops Delivery Controller address. For Citrix Cloud implementations, enter the Citrix Cloud Connector IP address. Click **Next**.
After specifying the Delivery Controller address, the **Citrix Cloud login** screen appears. This screen only appears for Citrix Cloud implementations.

6. Enter your **Citrix Cloud credentials**. Click **Sign In**.
7. After signing in to Citrix Cloud, select the appropriate Customer:
8. Click the **Device Type** to export. Select **Next**. Selecting **Virtual Devices** creates power managed Citrix Virtual Apps and Desktops catalog. Physical devices in the Citrix Virtual Apps and Desktops catalog are unmanaged. When selecting **Virtual Devices**, the wizard displays the **Host Resource** screen which allows you to click the host or hypervisor. For physical devices, the wizard skips to the **Active Directory and Collection** selection screen.
9. Click the host resource. Select Next.
10. When selecting the host resource, you must associate a user name and password. Select **OK**.

11. Click the Active Directory domain and collections that you want to export. Select **Next**.
12. Use the list to select the **VDA version**. Devices are required to register with the Delivery Controller referencing the machine catalog. Select **Next**.

Tip:

All displayed devices are exported to a single Citrix Virtual Apps and Desktop catalog. You cannot select a device in this list.
13. Click machine catalog preferences. If you are creating a catalog, specify the name and optionally include a description. Select Next.
14. Click the operating system. Select **Next**.
15. Set the user experience for the virtual desktop. Select **Next**.
16. Select **Finish** in the **Summary** screen to complete the wizard process.
Once the wizard finishes, use the Machine Catalog Screen to view the Citrix Virtual Apps and Desktops catalog. Ensure that the catalog was created with the associated machines.
Using the Streamed VM Setup Wizard

May 15, 2019

The Citrix Provisioning Streamed VM Setup Wizard deploys a streamed virtual disk to several cloned virtual machines (VMs).

Use the wizard to:

- Create VMs on a supported hosted hypervisor from an existing template:
 - XenServer
 - Hyper-V via SCVMM
 - ESX via vCenter
- Create Citrix Provisioning target devices within a collection
- Assign a virtual disk image that is in standard image mode to the VMs

Before running the wizard, be sure that the following prerequisites are met:

- One or more hypervisor hosts exist with a configured template.
- A Device Collection exists in the Citrix Provisioning site.
- A virtual disk in standard image mode exists, associated with the selected VM template.
- Template VM Requirements:
 - Boot order: Network/PXE first in list (as with physical machines).
Hard disks: If using local write cache, an NTFS formatted disk large enough for the cache must exist. Otherwise, no hard disks are required.

Network: Static MAC addresses. If using XenServer, address cannot be 00-00-00-00-00-00

- The Citrix Provisioning console user account was added to a provisioning site admin group or above.
- When creating accounts in the console, you need permissions to create the Active Directory account. To use an existing one, consider that the Active Directory account must exist in a known OU for selection.
- If you are importing an Active Directory .CSV file, use the following format: `<name>,<type>,<description>`. The .CSV file must contain the column header. For example:

  ```
  Name,Type,Description,
  PVSPC01,Computer,,
  ```

 The trailing comma must be included to signify three values, even if there is no description. This method is the same formatting used by Active Directory Users and Computers MMC when exporting the contents of an organizational unit.

- If you are running a vCenter server on alternate ports, the following registry modifications must be made to connect to it from Citrix Provisioning:

 - Create a new key HKLM\Software\Citrix\CitrixProvisioning\PlatformEsx
 - Create a string in the PlatformEsx key named ServerConnectionString and set it to ```http://{ 0 } :PORT\##/sdk```

 Note:
 If you are using port 300, ServerConnectionString=`http://{ 0 } :300/sdk`

This wizard creates VMs, associates Citrix Provisioning target devices to those VMs, and assigns a shared virtual disk to them.

The wizard is run directly from a Citrix Provisioning console.

1. Right-click on the Site icon in the Console tree panel, then select the Streamed VM Setup Wizard… menu option. The Welcome to the Streamed VM Setup Wizard dialog appears.
2. Click Next to begin the setup.
3. Select the type of hypervisor to connect to, then enter the required connection credentials.
4. Click Next to verify the connection.

 Note:
 For convenience, the most recently used hypervisor and user name are cached in the reg-
5. Optional. On the Hypervisor cluster screen, select the hypervisor host or cluster to host the VMs, then click Next.

6. Select one VM template from the specified host, then click Next.

7. On the Collection and vDisk page, select the collection in which to add VMs.

8. Select a single shared virtual disk within to assign to VMs within that collection, then click Next.

9. Set the number of VMs to create, the number of vCPUs, and the amount of Memory used by each new virtual machine.

10. Select the radio button next to one of the following methods, then click Next:
 - Create accounts
 - Import existing accounts

 Note:
 The Active Directory administrator must delegate rights to the Citrix Provisioning console user to allow Active Directory account creation.
 The domain and OU default to those rights of the current user.
 New computer names that are created are first validated that they do not exist as computers in Active Directory, VMs, or target devices.

11. If the Create new accounts method is selected:
 - Click Next. The Active Directory accounts and location screen appears.
 - Select the appropriate domain from the Domain menu, then select from the OUs listed for that Domain.
 - In the Account naming scheme menu, select a valid naming scheme consisting of at least one hash symbol (#) that is 15 characters or less. Also, select a number/character fill option that dynamically replaces the hash symbols in the specified naming scheme, incrementing by one for each VM as they are created.

 If Import existing accounts is selected:
 - Click Next. The Active Directory accounts and location page appears.
 - Click Browse to browse for an Active Directory Organizational Unit to import Active Directory account names, or click Import to import account names from a CSV file.
Note:
The Required count displays the number of virtual machines previously specified to be created. The Added count displays the number of validated entries added to the list.

12. Review all configuration settings, and then click Next to confirm and finish configurations.

Note:
Clicking Cancel cancels the configuration of any additional machines, and the quantity of successfully configured machines displays under the Progress bar. Progress is retained if the wizard fails or is canceled in the middle of an operation. Cleanup existing progress manually, which includes removing the following:

- Citrix Provisioning target devices created in the selected collection.
- VMs created in any of the selected hosts hypervisors.
- Active Directory computer accounts that were created.

Important:
When using the setup wizard to specify names associated with storage devices, do not use a comma. Citrix Virtual Apps and Desktops retains names associated with storage devices, separated by commas. For example, Storage 1, Storage 2, Storage 3. If a storage name includes a comma, for instance, Storage1, East, Citrix Provisioning erroneously recognizes it as two separate storage devices.

Tip:
There is a risk that moving target devices from site to site might cause them to be deleted in the future. This risk increases if the target device was created using the Streamed VM Setup Wizard. Citrix recommends that you avoid moving target devices from site to site.

Deploying virtual desktops to VMs using the Citrix Virtual Apps and Desktops Setup Wizard

June 25, 2019

The Citrix Virtual Apps and Desktops Setup Wizard (XDSW) helps with deploying virtual desktops to virtual machines (VMs) in addition to devices that use personal vDisks.

Important:
The Citrix Provisioning server must have direct access to the storage device to facilitate communication. The provisioning user must have read\write access to the storage device to ensure
successful provisioning with the HDD BDM.

The wizard:

- Creates VMs on a Citrix Virtual Apps and Desktops-hosted hypervisor using an existing machine template:
 - Citrix Hypervisor (formerly XenServer)
 - ESX via vCenter
 - Hyper-V using SCVMM. When provisioning to an SCVMM server, the wizard automatically changes the network configuration of both the first legacy NIC and the second synthetic NIC for Gen 1 VMs. See the SCVMM section for more information.
 - Nutanix Acropolis (from snapshots). See Nutanix Acropolis requirements for more information.
- Creates Citrix Provisioning target devices within a new or existing provisioning device collection matching the Citrix Virtual Apps and Desktops catalog name.
- Assigns a Standard Image virtual disk to VMs within the device collection.
- Adds the target to the selected Active Directory OU.
- Adds virtual desktops to a Citrix Virtual Apps and Desktops catalog.

Important considerations

Consider the following when using the Citrix Virtual Apps and Desktops Setup Wizard:

- For Citrix Virtual Apps and Desktops setup Wizard provisioned Gen 2 VMs, the BDM partition is FAT formatted with a drive letter. As a result, Windows in a Citrix Provisioning private image are aware of the new partition. For example, an RDS provisioning image using a write cache disk and BDM partition has 2 partitions in private image mode.
- When using the Linux streaming feature, consider that a new step was added to the Citrix Virtual Apps and Desktops Setup Wizard. Add the SOAP SSL certificate to ensure that the Linux target can image the virtual disk through the SOAP server. For details, see Installation.
- Using the Citrix Provisioning Setup Wizard to create VMs on a Citrix Hypervisor host while specifying 1 vCPU, creates a VM with 1 vCPU. However, the topology possesses 2 cores per socket. Creating VMs in this fashion prevents the VM from booting, while displaying the following error message in XenCenter: The value '{\VCPU_max must be a multiple of this field is invalid for field platforms:cores-per-socket. As a result, XenCenter fails to boot the VM because the topology and vCPU configuration are incompatible.
- The Citrix Virtual Apps and Desktop Setup Wizard creates targets then boots them to format the cache drive. This process occurs quickly. A VDA occasionally reaches a state where it fails to shut down correctly. This process occurs because the VDA is initializing while the Citrix Provisioning Device Service simultaneously finishes formatting the cache drive then shuts down the target. To resolve this issue, in the virtual disk registry key,
HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\CitrixProvisioning, create a DWORD called “Reboot-DelaySec”. Set an arbitrary value, delay-to-shutdown, in seconds using a decimal value.

• When using the Citrix Virtual Apps and Desktops Setup Wizard, the default VDA level is 7.9 even though there is a 7.20 VDA level. This behavior is the same in the Machine Creation Wizard in Studio. Also, the VDA level 7.20 in Citrix Virtual Apps and Desktops Setup Wizard is the same as the VDA level in Studio version 1811.

ESX permissions

For ESX 5.5, the minimum permissions include the following:

• Datastore Permissions
 – Allocate space
 – Browse datastore
 – Low level file operations

• Network Permissions
 – Assign network

• Resource Permissions
 – Assign virtual machine to resource pool

• System Permissions - These permissions are automatically added when you create a role in vCenter.
 – Anonymous
 – Read
 – View

• Task Permissions
 – Create Task

• Virtual machine configuration Permissions
 – Add existing disk
 – Add new disk
 – Advanced
 – Change CPU count
 – Change resource
 – Memory
 – Modify device settings
 – Remove disk
 – Settings

• Virtual Machine/Interaction
 – Power Off
 – Power On
 – Reset
Write cache considerations

The Citrix Virtual Apps and Desktops setup Wizard discards any hard disks that are attached to a template. This process minimizes provisioning time.

The wizard provisions diskless VMs if the virtual disk is in standard image mode and cache is set as cache on the server. If the cache is server-side, Citrix Provisioning does not automatically boot the provisioned VMs.

The wizard provisions VMs with write cache drives (the default size is 6 GB and the default type is dynamic). If the virtual disk is in standard image mode and cache is set as cache on the local hard disk. To format the write cache drive, the wizard automatically boots the VMs in standard image mode with the cache on the server. After formatting completes, VMs are automatically shut down, then Citrix Virtual Apps and Desktops can boot the VMs as necessary.

If the write cache is stored on hypervisor local storage, configuring deployment through the Citrix Virtual Apps and Desktops Setup wizard varies depending on your hypervisor:

- On Citrix Hypervisors, VMs are spread across multiple local storage resources. Create the template without storage (network boot).
On Hyper-V, VMs are spread across multiple local storage resources. The configuration file follows the write cache, but it is a small file.

On ESX, you cannot use the Citrix Virtual Apps and Desktops Setup Wizard to provision VMs if you are using hypervisor local storage.

Important:

When specifying names associated with storage devices, do not use a comma (,). Citrix Virtual Apps and Desktops retains names associated with storage devices separated by commas. For example, Storage 1, Storage 2, Storage 3. If a storage name includes a comma, for instance, Storage1,East, Citrix Provisioning erroneously recognizes this format as two separate storage devices.

Virtual disk types

VMs provisioned through the Citrix Virtual Apps and Desktops Setup Wizard have new disks created and attached for local provisioning write cache use. The default virtual disk types created are:

- “Fixed” or “dynamic” depending upon the storage repository used in Citrix Hypervisors
- “Dynamic” for SCVMM 2012 SP1
- “Fixed” for SCVMM 2012
- “Thin-provisioned” for ESX

There is a registry key to override the default types of write cache disks created by provisioning deployments on SCVMM and ESX. This registry key does not apply to Citrix Hypervisor. To force “fixed” (or “eager-zeroed thick” for ESX):

```
[HKEY_CURRENT_USER\Software\Citrix\ProvisioningServices\VdiWizard]
"OVERRIDE_VM_WRITE_CACHE_DISK_TO_FIXED"="true"
```

Setting this same key to **false** overrides to the dynamic setting. Remove the key to return to default behavior.

Run the wizard

Run the wizard directly from the Citrix Provisioning console or from a remote console.

The Citrix Virtual Apps and Desktops Setup Wizard cannot be used to connect twice in a row. Once the Wizard tries to connect to the Citrix Cloud Delivery controller once, regardless of connection success or failure, you must exit and close the console.

Important:

If you are using ISO BDM boot, ensure that the template has the BDM ISO attached to it. Configure
the PXE boot option in the Boot mode in the Virtual Machines page of the Citrix Virtual Apps and Desktops Setup Wizard.

1. Right-click on any Site icon in the Console tree panel, then select the Citrix Virtual Desktops Setup Wizard… menu option. The Citrix Virtual Desktops Setup Wizard appears. **Note:** The Citrix Virtual Apps and Desktop Setup Wizard is shown as the Citrix Virtual Desktops Setup Wizard in the provisioning console.

2. Click Next to begin setup.

3. On the Citrix Virtual Apps and Desktops Host page, enter the location of the Citrix Virtual Apps and Desktops Host address to connect to and to configure. The most recent Citrix Virtual Apps and Desktops Controller is cached in the registry of the local machine running this instance of the console.

4. Select a Citrix Virtual Apps and Desktops host. If you choose a cluster, machines are evenly distributed across the hosts cluster.

 Note:
 XenServer 5.5 Update 2 virtualization settings do not display. These settings are added in Citrix Virtual Apps and Desktops as host connections using the Manually create VMs option. As a result, you cannot specify a network or storage location for them, therefore it is not listed in the Citrix Virtual Apps and Desktops Setup Wizard.

5. Supply the host credentials, user name, and password.

6. From the list of available templates, select the template to use for the host you chose. If using a previous version of the VDA or if the template is built using Windows Vista, select the check box. Valid templates must have a dynamic MAC address or a static address with a value (00:00:00:00:00:00 is not a valid MAC address).

7. If there is more than one network available for the Virtualizations Settings, a page displays so you can select the appropriate network.

8. Select a single standard image mode virtual disk to assign to the collection of VMs.

9. Create a catalog or use an existing catalog from a previous release (Vista or Windows 7 with VDA 5.6). The options available depend on which catalog option you select:

 - If you chose to create a catalog, provide a name and description for that catalog. Appropriate machine types include:
 - Windows Client Operating System – best for delivering personalized desktops to users, or delivering applications to users from desktop operating systems. Provides the option to save a user’s changes to a Personal vDisk.
 - Windows Server Operating System – best for delivering hosted shared desktops for large scale deployment of standardized machines or applications, or both.
10. Select **VM preferences**. Preferences vary depending on the machine OS type and if assigned user changes are discarded after the session ends.

 a) For Windows Client or Windows Server machines that are randomly assigned to users who do not require a Personal vDisk:
 - Number of VMs to create (default is 1)
 - vCPUs (default is based on the previously selected template)
 - If the template has dynamic memory configured, two extra configuration settings are required (minimum and maximum memory).
 - Local write cache disk (default is 6 GB)
 - Boot mode. PXE boot (requires a running PXE service). BDM disk (creates a partition for the Boot Device Manager file).

 b) In addition to the preferences listed above, Windows client machines that are either randomly assigned or statically assigned to users have more preferences:
 - Personal vDisk size (default is 10 GB). When booting a target device from a Personal vDisk, the virtual disk's OS partition, C:\ by default, only shows the amount of space allocated to the Personal vDisk. It does not display the true size of the Personal vDisk.
 - Personal vDisk drive letter (default is P). The drive letter the target device uses for the Personal vDisk. The range allowed is between E: to U: and W: to Z:.

11. Choose the appropriate method for adding Active Directory computer accounts:

 - Create accounts
 - Import existing accounts

 The page that displays depends on which Active Directory method you select.

12. To create accounts: Delegate rights to the provisioning console user to allow Active Directory account creation or modification to manage computer account passwords.

 - Select the appropriate domain from the **Domain** menu box, then select from the OUs listed for that domain. The domain and OU default to rights of the current user.
 - Select the machine-naming option from the **Account naming scheme** menu text box. Enter a valid naming scheme consisting of at least one hash symbol (#) that is 15 characters or less. Also, select a number/character fill option that dynamically replaces the hash symbols in the specified naming scheme, incrementing by one for each VM as they are created.

13. To Import existing accounts:

 - Click **Browse** to browse for the appropriate OU to import, or click **Import** to import an existing .csv file in the following format:
The **Required count** displays the number of VMs previously specified and the **Added count** displays the number of entries in the list. If you import machine account names that exist in any of the following locations, they are not valid. They do not display in the list. Citrix Virtual Apps and Desktops (as a machine), Citrix Provisioning (as a device), and on the hypervisor (as a VM). If the AD structure contains many objects or containers, or if you are importing many machine accounts, the import might take a long time. It must validate that each imported account does not exist in Citrix Provisioning, Citrix Virtual Apps and Desktops, and the destination hypervisor. If so, you receive feedback in the form of an hour glass cursor while the import finishes.

14. Review all configuration settings. After confirming, the following actions take place one at a time across all hosts until configurations are complete:

- If applicable, create a Citrix Virtual Apps and Desktops catalog
- Create VMs on a host’s hypervisor using the machine template
- Create BDM partitions, if specified
- If using a Streamed with Personal vDisk Catalog, create a Personal vDisk, then attach the Personal vDisk to the VM
- Create a write cache disk of the specified size
- Create Citrix Provisioning target devices then assign the selected virtual disk to those devices
- Add the target devices to the selected provisioning collection
- Add the VMs to the Citrix Virtual Apps and Desktops catalog
- Boot each VM to format the newly created write cache disk

If you cancel during the configuration, you must manually remove the following:

- Citrix Virtual Apps and Desktops machines from the assigned catalog
- Active Directory computer accounts that were created.
- Newly created Citrix Virtual Apps and Desktops catalogs.
- Citrix Provisioning target devices created in the selected device collection.
- VMs created on any of the selected host hypervisors.

vDisks can be updated and reassigned to a target device that uses personal vDisks. However, the base disk must be of the same operating system and must have the machine SID. To update and reassign a virtual disk, copy the target device’s currently assigned base virtual disk image. Update the image to include new Citrix Provisioning software and drivers. Reassign the updated virtual disk to the target device. To reassign the virtual disk, use the vDisk Properties Assign vDisk dialog on the console.
Nutanix Acropolis requirements

The following are required when using Citrix Provisioning with Nutanix Acropolis:

- An installed Nutanix Acropolis hypervisor plug-in for Citrix Provisioning. Download this plug-in from the Nutanix support site. See the Nutanix documentation site for installation information.
- A Citrix Virtual Apps and Desktops host connection to AHV.
- Nutanix Acropolis platform version 5.1.1 or greater.

Tip:
Unique to AHV provisioning is the requirement to choose a container.

Important considerations when using Nutanix Acropolis hypervisors

When using Nutanix, consider the following:

- Do not delete the NIC of a provisioned VM and then readd them.
- Linux VMs, BDM partitions, and UEFI are not supported.
- Only the Citrix Virtual Apps and Desktops Setup Wizard is supported, not the Streamed VM Wizard.
- Acropolis hypervisors use snapshots and not templates for VMs.
- Ideally, a snapshot does not have an attached hard disk because the Nutanix Acropolis hypervisor does not remove the hard disk during provisioning.
- When you deploy machines that boot from BDM ISOs, the ISO is mounted in the snapshot. The provisioned VMs are set to use PXE boot and must be manually changed to boot from virtual optical drive.
- For PXE booting, you must use a command line option to set the VM boot order to network before imaging.
- When manually adding a Nutanix AHV host using the Virtual Host Connection Wizard, not enough information exists to effectively communicate with the Nutanix AHV hosting unit. This information, provided by the Citrix Virtual Apps and Desktops DDC, is not shared with the Virtual Host Connection Wizard. As a result, this information is not used to verify credentials. Therefore, the Verify Connection button in the Virtual Host Connection Wizard is disabled for Nutanix AHV hosts.
Citrix Provisioning allows you to implement a UEFI guest VM for Nutanix AHV hosts. The following prerequisites exist:

- The Citrix Virtual Apps and Desktops DDC are installed, along with the Nutanix plug-in.
- The Nutanix plug-in is installed in the provisioning server and provisioning console.

Note:
The VM is set to UEFI before installing the OS.

To implement a UEFI guest VM for Nutanix AHV:

1. Create a master VM.
2. SSH into Nutanix Acropolis and run the following command: `acli vm.update <VM_NAME> uefi_boot=True`.

3. Mount the Windows and virtual ISOs and install the OS.

4. Install all Windows updates on the OS.

5. Join the OS to Active Directory.

6. Install Citrix Provisioning on the target device.

7. Run the Citrix Provisioning Imaging Wizard to create the target device record, virtual disk, and other elements. Select No to shut down the target device, rather than rebooting it at the conclusion.

8. Set the VM to boot from the ISO boot and PXE boot the VM. Select one of the following boot options:

 - ISO boot – mount a BDM ISO created from the provisioning console. SSH into Nutanix Acropolis and run the following command: `acli vm.update_boot_device VM_NAME disk_addr=CDROM BUS`. For example, `acli vm.update_boot_device testVM disk_addr=ide.0`. This command string example assumes that the CDROM is bus IDE 0.

 - Network boot - SSH into Nutanix Acropolis and run the following command: `acli vm.update_boot_device <VM_NAME> mac_addr=<mac_addr>`, `acli vm.update_boot_device testVM mac_addr=52:54:00:2c:ff:03`.

9. Start the VM and log into Windows to start the second stage of Imaging Wizard, imaging.

10. Create a VM. As in the master VM, repeat steps 2 and 7.

11. In the provisioning console, create a VM record for the snapshot VM using the VM’s MAC address. Assign the virtual disk created in step 7 to this device record.

12. Boot the VM. Install the VDA, and restart if prompted. Shutdown when the installation finishes.

13. Create a snapshot of this VM.

14. In the provisioning console, set the virtual disk to standard image mode. If the cache mode is Cache on device hard disk or Cache in device RAM with overflow to hard disk, the wizard prompts you to create a cache disk.

15. Use the Citrix Virtual Apps and Desktops setup Wizard to provision UEFI provisioning target devices using the created virtual disk.

SCVMM requirements

You cannot provision vGPU-enabled VMs on Hyper-V.
Provisioning vGPU-enabled Citrix Virtual Apps and Desktop machines

May 15, 2019

Requirements

- NVIDIA GRID K1 or K2 cards.

Tip

Sometimes, other NVIDIA cards function properly (for example, NVIDIA Tesla M60) as long as the Citrix Hypervisor (formerly XenServer)/ESX hypervisor supports it. The underlying vGPU card in the Citrix Hypervisor host is unknown to Citrix Provisioning. Citrix Provisioning only uses the vGPU setting in the template and propagates it to the VMs provisioned by the Citrix Virtual Apps and Desktops Setup Wizard.

- A server capable of hosting XenServer and NVIDIA GRID cards.
- A supported hypervisor: Citrix XenServer 6.2 or newer, or vSphere 6.0 or newer.
- The NVIDIA GRID vGPU package for your hypervisor.
- NVIDIA drivers for Windows 7 32-bit/64-bit.
- The Citrix Provisioning release that corresponds to the Citrix Virtual Apps and Desktop release you are using. This Wizard only supports the corresponding Citrix Virtual Apps and Desktops controller.
- To provision machines using the Citrix Provisioning Setup Wizard, you must use Citrix Provisioning 7.7 or newer and XenDesktop 7.7 or newer. If you use earlier product versions you can only provision machines manually or by using the Citrix Provisioning Streamed Virtual Machine Setup Wizard.

Note:

Citrix Virtual Apps and Desktops supports power management for virtual machine (VM) catalogs, but not for physical machine catalogs.

Provisioning procedures

Prepare the master VM

1. Prepare the master VM with vGPU enabled.
2. Install the NVIDIA drivers.
3. Join the machine operating system to Active Directory.
4. Install the Citrix Provisioning target device software.
5. Using the Citrix Provisioning Imaging Wizard, create a master virtual disk image. If you plan to use the Citrix Virtual Apps and Desktops Setup Wizard to provision machines, select the **Target Device Optimizer** option, otherwise the VM fails to boot.

Prepare the template VM

1. Create a template VM with the same properties as the master VM. Assign a hard drive to the template VM to use for write cache.
2. Create a device record in the Citrix Provisioning database with the MAC address of the template VM.
3. Assign the virtual disk to the template VM, and then set the device to boot from virtual disk.
4. PXE boot the VM.
5. Format the write-cache disk.

Install the Citrix Virtual Apps and Desktops Virtual Delivery Agent

1. Using the Citrix Provisioning console, set the virtual disk image mode to **Private Image**.
2. Install the Citrix Virtual Apps and Desktops Virtual Delivery Agent (VDA) and point the VDA to the Citrix Virtual Apps and Desktops Server during the installation.

 Note: Alternatively, you can install both the VDA and the target device software before creating the virtual disk image. Both install methods require the new template VM to have a formatted write-cache hard drive.
3. Reboot the VM, and then shut the VM down.
4. Convert the VM to a template.

Create Citrix Virtual Apps and Desktops VMs

1. Using the Citrix Provisioning console, set the virtual disk image mode to **Standard Image**.
2. Choose the preferred write cache method.
3. Select from the following provisioning methods:
 - Run the Citrix Provisioning Citrix Virtual Apps and Desktops Setup Wizard to provision VMs. This method is available only if you are using Citrix Provisioning 7.7 or later and XenDesktop 7.7 or later.
 - Run the Citrix Provisioning Streamed VM Setup Wizard to provision VMs.
 - Manually create VMs by creating target device records using device MAC addresses, assign the virtual disk to the VMs, and then add the target devices to Active Directory.
Create Citrix Virtual Apps and Desktops machine catalogs

When choosing between creating physical or virtual/blade server machine catalogs, it is important to consider the different advantages and requirements. For example, VM machine catalogs allow for power Citrix Virtual Apps and Desktops management while physical machine catalogs do not.

Virtual and blade server machine catalogs

For Citrix Virtual Apps and Desktops, the host record must point to the Citrix Hypervisor host or pool where the vGPU VMs existed. The VM names in your hypervisor, device record names in the Citrix Provisioning device collection, and the Active Directory record must all be the same.

To configure virtual and blade server catalogs:

2. On the Machine Management page, for This Machine Catalog uses, select Machines that are power managed.
3. For Deploy machines using select Citrix Provisioning. Power management is Citrix Virtual Apps and Desktops.
4. For User Experience select Users connect to a random desktop each time they log on.
5. Enter the Citrix Provisioning server’s IP address for the device collection.
6. In the structure that appears, select the Citrix Provisioning device collection where all the vGPU devices are located, then click Next. Device records are stored in an exclusive device collection.
7. In the structure that appears, select the Provisioning device collection where all the vGPU devices are located, then click Next. Device records are stored in an exclusive device collection.
8. Enter a machine catalog name and description, then click Finish.

Physical machine catalogs

Device names must exist in Citrix Provisioning device collection and in Active Directory.

Note:

The Citrix Virtual Apps and Desktops host record is not required and the VM record names are not verified.

1. Start the Citrix Virtual Apps and Desktops Machine Catalog Setup Wizard, then select Windows Desktop OS on the Operating System page. On the Machine Management page, for This Machine Catalog uses select Machines that are not power managed, for example, physical machines.
2. On the Machine Management page, for This Machine Catalog uses select Machines that are not power managed, for example, physical machines.
3. For **Deploy machines using**: select **Citrix Provisioning**. Power management is not provided by Citrix Virtual Apps and Desktops.

4. For **User Experience** select **Users connect** to a random desktop each time they log on.

5. Enter the provisioning server’s IP address for the device collection.

6. Identify the domain where all device Active Directory records are stored and the VDA version level, then click **Connect**.

7. In the structure that appears, select the **Citrix Provisioning device** collection where all the vGPU devices are located, and then click **Next**. Device records are stored in an exclusive device collection.

8. Enter a machine catalog name and description, and then click **Finish**.

Create a Delivery Group and associate it with the machine catalog

For details on creating a Delivery Group, see the Citrix Virtual Apps and Desktops documentation.

Citrix Provisioning and Citrix Virtual Apps and Desktops cloud considerations

Within a Cloud DDC, you create a machine catalog and deploy it to those machines using Citrix Provisioning by pointing the catalog to a provisioning collection. If you use Citrix Provisioning with a Cloud DDC, all the machines within the provisioning collection must be associated with Active Directory accounts.

Citrix Provisioning Accelerator

May 14, 2019

Citrix Provisioning Accelerator enables a provisioning proxy to reside in Dom0 (the XenServer Control Domain) on a XenServer host. This is the location where streaming of a provisioning virtual disk is cached at the proxy before being forwarded to the VM. Using the cache, subsequent VM booting (or any I/O requests) on the same host are streamed from the proxy rather than streaming from the server over the network. Using this model, more local resources on the XenServer host are consumed, but streaming from the server over the network saves resources, effectively improving performance.

With this functionality:

- Citrix Provisioning and XenServer provide an improved functional paradigm by providing a unique value available when used together.
- Citrix Provisioning supports local, NAS, and SAN attached storage in XenServer.
- Environments experience reduced network traffic.
• Deployments experience improved fault tolerance, with tolerance for outage instances of a Citrix Provisioning server.

Important:

This feature is only supported on XenServer version 7.1 (or later) with the proxy capability installed. UI changes only occur when you are using that type of hypervisor. When you use this feature, an optional package must be installed on the XenServer host. There are no additional dependencies on the installer.

For more information on the relationship between XenServer and Citrix Provisioning, see the blog [XenServer and Citrix Provisioning: Better Together](#).

Tip:

Do not disable this feature on a VM using the XenServer console. When disabled using this method, provisioning fails to recognize the configuration change and continues to believe that the accelerator feature is enabled on that VM. If you want to disable this feature for a single device, see:

- *Enabling or disabling Citrix Provisioning Accelerator for individual devices*
- *Enabling or disabling Citrix Provisioning Accelerator for all devices on a host*

Using Citrix Provisioning Accelerator

The proxy feature is only supported on XenServer with the proxy capability installed (version 7.1). UI changes only occur when you are using that type of hypervisor. An optional package must be installed on the XenServer host. There are no additional dependencies on the installer.

Before using this feature the XenServer administrator must create a Citrix Provisioning Site object using the XenServer console. This process effectively configures the storage (that is, storage repositories) that is used when proxying the I/O requests. This work must be performed on XenServer.

Consider the following when using this feature with XenServer:

- A XenServer Citrix Provisioning site object must be created and configured with the storage repository (SR) before the Citrix Provisioning console establishes a proxy connection on the VM.
- Citrix Provisioning calls the XenServer API to check if the proxy feature is enabled before it exposes any provisioning/XenServer proxy interfaces.
- Citrix Provisioning configures the XenServer proxy for devices using the Citrix Virtual Apps and Desktops Setup Wizard and the Streamed VM Setup Wizard.
- Citrix Provisioning targets are aware of their proxy status. Once the feature is installed, no additional configuration tasks are required.
- After reinstalling XenServer, the accelerator cache remains configured in the Citrix Provisioning database. This process causes an error in the VM setup wizard because Citrix Provisioning as-
sumes that the cache still exists. To resolve this issue, delete and then add the XenServer host using the provisioning console. This procedure enables Citrix Provisioning to clear the stored cache configuration. After the stored cache configuration has been cleared, the administrator can create a one in XenCenter.

Tip:
In environments where two provisioning servers reside with the same VHD but have different file system timestamps, the data is cached twice. Due to this limitation, Citrix recommends that you use VHDX rather than VHD.

Configuring Citrix Provisioning Accelerator

Use the Citrix Virtual Apps and Desktops Setup Wizard and the Streaming Wizard to access this feature. Both Wizards are similar, and share many of the same screens. The following differences exist:

- The Citrix Virtual Apps and Desktops Setup Wizard is used to configure VMs running on a hypervisor. For example, XenServer, ESX, or HyperV/SCVMM, controlled using Citrix Virtual Apps and Desktops.
- The Streaming Wizard is used to create VMs on a XenServer host. It does not involve Citrix Virtual Apps and Desktops.

Note:
This feature is only supported on XenServer with the installed functionality. UI changes captured in this section only apply when you are using that type of hypervisor.

Tip:
When a proxy cache configuration is tied to a provisioning server, and you reinstall XenServer on the host that had the accelerator feature enabled, Citrix Provisioning, and XenServer become out of sync. This occurs because the reinstallation of XenServer wipes the previously configured proxy cache configuration.

In this scenario, Citrix Provisioning assumes that the proxy cache configuration still exists, and when the Streamed VM Setup Wizard is used, it fails. This process indicates that the provided UUID (associated with the proxy configuration) is invalid. For this reason, the user must delete all previously configured VMs associated with this cache configuration, including the host. Reconfigure Citrix Provisioning and set up the cache again.

To configure Citrix Provisioning Accelerator, select one of the Wizards (**Citrix Virtual Apps and Desktops Setup Wizard** or **Streamed VM Setup Wizard**) in the provisioning console:

1. Navigate to a site.
2. Select the site, then right-click to expose a contextual menu:
1. Select the appropriate Wizard based on how you intend to use the accelerator feature.

Using wizards to configure Citrix Provisioning Accelerator

To use this feature, first determine how you use it. If you are:

- configuring VMs running on a hypervisor controlled by Citrix Virtual Apps and Desktops, use the [Citrix Virtual Apps and Desktops Setup Wizard](#).
- creating VMs on a XenServer host that does not involve Citrix Virtual Apps and Desktops, use the [Streamed VM Setup Wizard](#).

Configure proxy-accelerator using the streamed VM setup wizard

The Streamed Virtual Machine Setup Wizard was modified to include a new check box to enable the feature. After invoking the Wizard, select **Enable PVS-Accelerator for all Virtual Machines**:
Tip:

After you select **Enable PVS-Accelerator for all Virtual Machines**, all VMs that are created using the Wizard are configured to use the proxy feature.

After you enable this feature, the following screen appears (the first time PVS-Accelerator is enabled for the host) after clicking **Next**:
Tip:
The Wizard allows you to select the XenServer Citrix Provisioning site to which you want to apply accelerator functionality. In the XenServer screen, a menu displays the list of all the Citrix Provisioning site objects on XenServer. These are objects that have been configured but not yet associated with a provisioning site.

In the menu, select a provisioning site to associate with accelerator functionality. After you select it, the site is now associated with the Citrix Provisioning site that was selected from which to run the Wizard.

Note:
The next time this Wizard is run for the same Citrix Provisioning site using the same XenServer, this page is not displayed.

After using one of the Wizards to configure this feature, the Summary screen appears to illustrate the current state. Use this screen to determine if it is enabled, and the current cache configuration.
associated with it.

Click **Finish** to apply the configuration:

![Image of Streamed Virtual Machine Setup]

Enabling or disabling Citrix Provisioning Accelerator for individual devices

If a device was created using either wizard, and accelerator was configured for that XenServer host in the Wizard, use the **Target Device Properties** screen to enable or disable the feature for an individual device.

To enable or disable this feature for an individual device:

1. Access the **Target Device Properties** screen.
2. In the **General** tab, select (or deselect) **PVS-Accelerator Configured**.

3. Click **OK** to apply the change.

Disabling Citrix Provisioning Accelerator for all devices on a host

If this feature was enabled for a host, you can disable it using the **Virtual Host Connection Properties** screen for all devices on the specified host.

Important:

You cannot use the **Virtual Host Connection Properties** screen to enable PVS-Accelerator on the specified host. Enable the feature using one of the Wizards (Citrix Virtual Apps and Desktops Setup Wizard or Streamed Wizard) while creating devices.

To disable this feature for all devices on the specified host:

1. Access the **Virtual Host Connection Properties** screen.
2. In the **General** tab, select (or deselect) **PVS-Accelerator Enabled**.

3. You are prompted to confirm the following action:
4. After verifying the action, click **OK** to apply the change.

Unified Extensible Firmware Interface (UEFI) pre-boot environments

May 14, 2019

Citrix Virtual Apps and Desktops supports Unified Extensible Firmware Interface (UEFI) hardware technology on Hyper-V (Generation 2) and ESX VMs. These elements are managed using SCVMM and vCenter respectively and streamed using Citrix Provisioning. This functionality enables you to:

- Stream the server operating system at startup time using Gb network speeds, so users experience faster startups.
- Support TB disks in a virtualized environment.

UEFI is a complete replacement for the BIOS and requires a new bootstrap. Two bootstraps are available: one for 32-bit and one for 64-bit systems. The introduction of another bootstrap complicates network topologies depending upon how the bootstrap is delivered.
Secure boot in UEFI

Citrix Provisioning supports Secure Boot in UEFI on these platforms:

- Physical machines with UEFI firmware and the Secure Boot option.
- Hyper-V 2016 and later VMs that use the Microsoft UEFI Certificate Authority template in the Secure Boot setting. Hyper-V 2012 R2 is not supported.
- ESX UEFI with Secure Boot.

Network topology

Using a PXE server allows for the simplest topology because the PXE protocol supports multiple architectures. The Citrix Provisioning PXE Server recognizes the architecture flag embedded in DHCP, then discovers and returns the appropriate bootstrap file name. Both legacy BIOS computers and UEFI computers can therefore be on the same network segment.

If DHCP option 67 is chosen, there are two topology options:

- On a single segment, use DHCP reservations to specify the bootstrap file name (option 67) for every target device. This process is feasible for smaller environments but quickly scales out of hand for enterprise environments.
- Divide the environment into multiple segments, isolating the legacy devices from the UEFI devices. For each segment, configure a DHCP scope with the appropriate option 67 set.

Configuring bootstraps

The UEFI bootstrap cannot have embedded settings. DHCP options are therefore used to configure the UEFI bootstrap.

DHCP option 11 – RLP server

Option 11 allows you to specify multiple IPv4 addresses. Use this option to specify the addresses of the streaming NICs on the provisioning server. You can specify more than four addresses. The UEFI bootstrap reads all addresses then uses round-robin to select one address to connect to.

Note:
Option 17 takes precedence over option 11.
DHCP option 17 – root path

The Root Path option is typically used with iSCSI to specify the server and virtual disk to start. Citrix Provisioning uses the following format to specify the server address:

```plaintext
pvs:[IPv4]<:17:6910>
pvs - Required identifier
IPv4 - Address of a streaming NIC on the Provisioning Services server
17 - Protocol identifier for UDP (required if a logon port is specified)
port - Logon port (not required if the default port of 6910 is used)
```

Examples:

```plaintext
pvs:[server.corp.com]:17:6910
pvs:[server.corp.com]
pvs:[192.168.1.1]
pvs:[192.168.1.1]:17:6910
```

Associating a target device with a bootstrap

Use the BOOTPTAB file to associate a target device with a specific bootstrap. The following issues apply to the format of the BOOTPTAB file to support mixed legacy and UEFI environment:

- The `ar` tag specifies the architecture of the target device’s boot environment. You can make multiple entries for the same MAC address but different architectures. This tag is useful for hardware supporting both legacy BIOS and UEFI booting.
- Wildcards are not supported. If an entry for a given MAC address is not found in the BOOTPTAB file, a default value is used.

The following table lists the architectures for BOOTPTAB:

<table>
<thead>
<tr>
<th>Value</th>
<th>Architecture</th>
<th>Bootstrap file name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x86 BIOS</td>
<td>ardbp32.bin</td>
</tr>
<tr>
<td>6</td>
<td>x86 UEFI</td>
<td>pvsnbpia32.efi</td>
</tr>
</tbody>
</table>
The full list of architectures is available from the IETF.

The format of the BOOTPTAB file is:

<hostname>:ha=<mac_address>:ar=<architecture>:bf=<bootstrap_name>

Examples:

host001:ha=001122334455:ar=0:bf=ardbp32.bin
host002:ha=554433221100:ar=7:bf=pvsnbpx64.efi

If the architecture flag is missing, 0 is the default value.

Citrix Provisioning managed by Citrix Cloud

October 25, 2019

Citrix Provisioning supports a connector for Citrix Cloud integration. It enables provisioned VDAs to be used in the Citrix Virtual Apps and Desktops. This connector provides the same functionality used in on-premises deployments.

Important considerations:

- You must use an on-premises Citrix Virtual Apps and Desktops license to serve cloud based licenses. If you are using an earlier Citrix Provisioning version, prior to 7.18, you must continue to host the on-premises Citrix License server in addition to using either a Citrix Provisioning Enterprise or Platinum license version.
- Configure the Citrix Provisioning console (or use associated PowerShell commands) to use the Citrix Cloud license.
- In some cases, an error message appears indicating that the Citrix Provisioning version does not support the Citrix Cloud license schema. For example, if you are using Provisioning Services version 7.1S and attempt to use the connector for Citrix Cloud, an error message appears:

 No device license is currently available for this computer

Check your on-premises Citrix Licensing server and ensure you are using either a Citrix Provisioning Enterprise or Platinum license version.
What’s required

The following elements are required when using Citrix Provisioning with Citrix Cloud:

- **Citrix Virtual Apps and Desktops Delivery Controller in Citrix Cloud**: Citrix Virtual Apps and Desktops builds a version of the Citrix Provisioning PowerShell snap-in (Citrix.PVS.snapin) with a subset of the Citrix Provisioning on-premises cmdlet. This version is built specifically to run in Citrix Cloud and communicate with Citrix Provisioning on-premises through the Citrix Cloud Connector.

- **Citrix Cloud Connector located on-premises**: The Cloud Connector acts as a relay which exposes the Azure Provisioning Service endpoints to enable communication between the Citrix Virtual Apps and Desktops Delivery Controller. Also, the Cloud Connector contains a WCF endpoint listening on the Azure Service Bus for communicating with the Provisioning Server.

- **Provisioning Server located on-premises; this server must be version 7.18 or later**: The Provisioning Server communicates with the Cloud Connector while establishing SOAP calls to MAPI.

- **Citrix Virtual Apps and Desktops Remote PowerShell SDK**: The Provisioning Console installation includes the Citrix Virtual Apps and Desktops SDK. The Citrix Virtual Apps and Desktops Remote PowerShell SDK replaces the Citrix Virtual Apps and Desktops SDK. The SDK is used by the Citrix Virtual Apps and Desktops Setup Wizard to push VDA records to the Delivery Controller in Citrix Cloud.

- **The Licensing Server must be on-premises**: For Citrix Provisioning deployments, the Citrix License Server must be on-premises.

When using the Citrix Cloud feature, consider the following:

- To install the remote PowerShell SDK on the provisioning server, uninstall the 5 Citrix Virtual Apps and Desktops snap-ins from the server, then install the remote PowerShell SDK.
- Once a Citrix Provisioning console is installed with the remote PowerShell SDK and is used for provisioning, it no longer functions with on-premises Citrix Virtual Apps and Desktops.
- In the Citrix Virtual Apps and Desktops Setup Wizard, enter the **IP address** for the Citrix Cloud Connector when it prompts for the controller address.

Dependencies

The following dependencies exist when using Citrix Provisioning and Citrix Cloud:

- Citrix Studio
- Citrix Cloud Connector, with the Remote Broker Provider (XaXdCloudProxy)
- Citrix Virtual Apps and Desktops Remote PowerShell SDK
On-premises versus Citrix Cloud deployments

Traditional Citrix Virtual Apps and Desktops deployments using Citrix Provisioning require the management of two distinct elements: both the Citrix Virtual Apps and Desktops deployment and the Citrix Provisioning deployment. Such environments resemble the following image, without the added complexity of illustrating VDA components:

With an on-premises Citrix Provisioning deployment, the Citrix Virtual Apps and Desktops have been extended:
Extending the Citrix Virtual Apps and Desktops deployment eliminates the need to operate and manage the deployment while still providing the benefits of a managed Citrix Provisioning deployment.

Citrix Provisioning adds provisioning managed VDAs to a machine catalog in the Citrix Virtual Apps and Desktops Delivery Controller located in Citrix Cloud. This process uses one of two methods:

- Add new devices using the Citrix Virtual Apps and Desktops Setup Wizard in the provisioning console.
- Import existing Citrix Provisioning devices using the machine catalog creation wizard in Citrix Studio.
Citrix Virtual Apps and Desktops Setup wizard in the Citrix Provisioning console

The Citrix Virtual Apps and Desktops Setup Wizard enables you to create Citrix Provisioning devices and collections, and then create machine catalogs containing these elements. The Citrix Virtual Apps and Desktops SDK must be replaced with the Citrix Virtual Apps and Desktops Remote PowerShell SDK. This Remote PowerShell SDK is responsible for communicating with the Delivery Controller.

Machine catalog setup wizard using studio

The machine catalog setup wizard imports existing provisioned-managed VMs to a Citrix Virtual Apps and Desktops catalog. In cases such as these, the VMs must be previously created using the provisioning console. Consider:

- Studio uses the PowerShell snap-in PvsPsSnapin to communicate with the provisioning server. The PvsPsSnapin is a subset of the existing Citrix Provisioning PowerShell snap-in, Citrix.PVS.Snapin. It contains the following cmdlets:
 - Clear-PvsConnection
 - Get-PvsVersion
 - Get-SimplePvsADAccount
 - Get-SimplePvsCollection
 - Get-SimplePvsDevice
 - Get-SimpleDiskLocator
 - Get-SimpleDiskUpdateDevice
 - Get-SimplePvsSite
 - Get-SimplePvsUpdateTask
 - Set-PvsConnection

Note:

In Citrix Cloud, PvsPsSnapin has been extended. This snap-in enables communication from the Citrix Virtual Apps and Desktops to the PvsMapiProxyPlugin, a newly created proxy added to XaXdCloudProxy in the Cloud Connector.

Communication is over a secure channel, HTTPS port 443, including Citrix Provisioning administrator credentials. These credentials are used by the proxy to impersonate the administrator before contacting the Provisioning Server.
Connecting your Citrix Provisioning deployment to the Citrix Virtual Apps and Desktops in Citrix Cloud

To connect an existing Citrix Provisioning deployment to Citrix Cloud:

1. Add a Cloud Connector to your managed components, for example, resource locations.
2. Upgrade Citrix Provisioning; you must use the latest version. See the download page.
3. Replace the Citrix Virtual Apps and Desktops SDK on your Citrix Provisioning console with the Citrix Virtual Apps and Desktops Remote PowerShell SDK.

When installing this SDK, consider that the Provisioning Console on which this functionality is installed does not communicate with local Citrix Virtual Apps and Desktops deployments. This functionality also applies to the provisioning server. Communication exists only to the Citrix Cloud. Devices managed by the Delivery Controller in Citrix Cloud update their virtual disk images and VDAs to use the Delivery Controller to register with Citrix Virtual Apps and Desktops.

Important:
An on-premises Citrix License Server is required in the Citrix Virtual Apps and Desktops Service deployment. See the Licensing page for more information.

Adding the Citrix Cloud Connector

Connecting a Citrix Provisioning deployment to the service requires the addition of the Cloud Connector to your managed components, for example, your resource location. When adding this connector to managed components, consider:

- The service does not directly call into the Cloud Connector.

To add the Cloud Connector, see the instructions on the Citrix Cloud Connector page.

Upgrade Citrix Provisioning

To use Citrix Cloud with Citrix Provisioning, you must use a version that integrates with the Citrix Virtual Apps and Desktops. For optimum performance, Citrix recommends using Citrix Provisioning version 7.18 or later. Access the Applications and Desktops Service Downloads page for the appropriate version.
Using the Citrix Virtual Apps and Desktops remote PowerShell SDK

The Provisioning Console component includes the Citrix Virtual Apps and Desktops SDK; this SDK must be replaced with the Citrix Virtual Apps and Desktops Remote PowerShell SDK.

To use the new SDK

1. Uninstall the Citrix Virtual Apps and Desktops SDK from the Provisioning Console by removing the following snap-ins:
 - Citrix Broker PowerShell snap-in
 - Citrix Configuration Logging Service PowerShell snap-in
 - Citrix Configuration Service PowerShell snap-in
 - Citrix Delegated Administration Service PowerShell snap-in
 - Citrix Host Service PowerShell snap-in
2. Download the Remote PowerShell SDK from the Downloads page. PowerShell 3.0 is required to be pre-installed.
3. Install the SDK using the command to execute: `CitrixPoshSdk.exe PVS=YES`. See SDKs and APIs for more information.

 Important:
 Install the downloaded SDK from the command line, and include the argument “PVS=YES.”
Citrix Provisioning 1909

XenApp and XenDesktop Remote PowerShell SDK

CITRIX LICENSE AGREEMENT

Use of this component is subject to the Citrix license or terms of service covering the Citrix product(s) or service(s) with which you will be using this component. This component is licensed for use only with such Citrix product(s) or service(s).

CTX_code EP_R_A124358

- I accept the terms of this license agreement

[Next] [Cancel]

XenApp and XenDesktop Remote PowerShell SDK

The installation was completed successfully.

Next Step:

- View the readme for how to use the XenApp and XenDesktop Remote PowerShell SDK.

[Close]
To verify the new SDK installation

1. Open **PowerShell**.
2. Execute the cmdlet: `Add-PsSnapin Citrix*`.
3. Execute the cmdlet: `Get-BrokerServiceStatus`.
4. Sign in to Citrix Cloud.

Tip:

The `Get-BrokerServiceStatus` cmdlet indicates that the Delivery Controller is **OK**.

Firewall considerations

Firewall configurations typically require zero or minimal updates. Consider the following:

- On the Provisioning Console, outward bound SDK traffic uses HTTPS (port 443).
- On the Cloud Connector machine, all traffic is outbound to the cloud over HTTPS (port 443). This process enables the connector and Console to reside behind NATs and HTTP proxies.
- The new Citrix Provisioning proxy added to the Cloud Connector forwards HTTP (port 80) communications to the Provisioning Server, using wsHttp message security.

Note:

Personal vDisk functionality is not supported.

Administer VDAs

To add Citrix Provisioning managed VDAs to a machine catalog

- Use the Citrix Virtual Apps and Desktops Setup Wizard in the provisioning console, or;
- Use the machine catalog setup wizard in Citrix Studio
Using the Citrix Virtual Apps and Desktops Setup wizard to add VDAs

The Citrix Virtual Apps and Desktops Setup Wizard creates Citrix Provisioning devices and collections, then creates machine catalogs containing these elements. The Wizard prompts for the Citrix Virtual Apps and Desktops Controller address.

1. Provide the address of one of the Cloud Connector machines (rather than the Controller address).

2. After entering the address of the Cloud Connector, click Next.

 The Citrix Cloud authentication screen appears, prompting for sign-in credentials. This prompt is generated by the Citrix Virtual Apps and Desktops Remote PowerShell SDK and is cited by the Provisioning Console.
Tip:
The Citrix Cloud credentials enable the SDK to securely communicate with the Citrix Virtual Apps and Desktops to configure the machine catalogs. The remaining steps in the Citrix Virtual Apps and Desktops Setup Wizard are unchanged. The only difference is the prompt for the Citrix Cloud sign-in credentials when the wizard first invokes the cmdlet in the Remote PowerShell SDK.

Using the machine catalog setup wizard to add VDAs

This Citrix Studio wizard adds existing managed Citrix Provisioning VMs to a catalog. In this scenario, the VMs were previously created using the Provisioning Console.

To use this wizard

1. Access Citrix Studio from the Manage tab of the Citrix Virtual Apps and Desktops page.
2. Select Machine Catalogs in the navigation pane.
3. Click Create New Catalog in the Actions pane.
4. Select **Citrix Provisioning**, and click **Next**.

5. On the Device Collection page, provide the address of the Citrix Provisioning server and click **Connect**.
6. Provide the login credentials for the Citrix Provisioning administrator and click **OK.**
After entering the login credentials, Studio communicates with the Cloud Connector, which then forwards requests to the provisioning server using the specified credentials. If a valid Citrix Provisioning administrator is provided, device collections are displayed.
This authentication method represents the only difference between an on-premises Citrix Virtual Apps and Desktops deployment and a Citrix Virtual Apps and Desktops deployment in Citrix Cloud. In an on-premises case, the identity of the Citrix Studio user authenticates to the provisioning server. In the service model, an explicit authentication is required because Studio runs in an AD environment with no trust relationships to the AD of the Citrix Provisioning deployment.

Error messages in studio

When setting up a machine catalog using the wizard, the **Device Collection** screen displays the state of Citrix Provisioning cloud connection. If the feature has not been enabled, an error message appears, indicating that “Citrix Provisioning for Cloud feature is not enabled.”
Troubleshooting the Citrix Provisioning cloud connector

Use the information in this section to troubleshoot issues related to using the Citrix Virtual Apps and Desktops Setup Wizard for Delivery Controller connectivity.

To verify connectivity

1. Ensure that the Remote PowerShell SDK is installed and properly configured. Verify that the Remote PowerShell SDK is installed by executing the following command: `CitrixPoshSdk.exe PVS=YES`.
2. Uninstall the 5 Citrix Virtual Apps and Desktops snap-ins from the Citrix Provisioning Server and Console.
3. Verify that the Cloud Connector can communicate with Citrix Provisioning systems, specifically, the server and console. Also, verify communication with other resources like the Active Directory Controller, using IP and FQDN, and hypervisors.
4. Ensure that the Citrix Provisioning account is also a member of the local Citrix Provisioning OS Admin group.
Tip:
To install the remote PowerShell SDK on the Provisioning Server, you must uninstall the 5 Citrix Virtual Apps and Desktops snap-ins, then install the remote PowerShell SDK.

Connection problems between the provisioning server and the delivery controller

Use the information in this section to troubleshoot connectivity problems between the Delivery Controller and the Provisioning Server.

To verify connectivity:

1. Ensure that the Cloud Connector in the resource location is installed successfully.
2. Ensure that the Cloud Connector is on the same VLAN\VNET as the Provisioning Console system.
3. In Citrix Studio, ensure that the Zones screen properly displays the Cloud Connectors.
4. Verify that at least one Cloud Connector is “Connected:”
 b. Under Resource locations > Your Resource Location > Cloud Connectors, verify that at least one Cloud Connector is showing status as Green.
5. Verify that Citrix Provisioning Support in Citrix Cloud is enabled. Ensure that the PvsSupport feature toggle is enabled in the customer’s configuration and by the Citrix Cloud administrator.
6. Verify that the Citrix Remote Broker Provider is up and running in the Cloud Connector. See the Cloud Connector to see if the Citrix Remote Broker Provider Service is running.
Considerations when using the Machine Creation Service (MCS) wizard

Use the information in this section when using the MCS wizard in Citrix Studio to import Citrix Provisioning devices into Citrix Virtual Apps and Desktops devices. Verify that:

- Citrix Provisioning devices exist in the collection.
- All target devices are joined to the domain at the same OU.
- A host record of the hypervisor environment where on-prem VMs are located is created in Citrix Virtual Apps and Desktops.
- The correct domain is chosen before the client’s domain. This process must occur before connecting to the provisioning server in the wizard.

Manage

May 29, 2019

Use the information in this section to manage Citrix Provisioning:

- Farms represent the top level of a Citrix Provisioning infrastructure.
• **Sites** provide a method of representing and managing logical groupings of Citrix Provisioning servers, device collections, and local shared storage.
• **Servers** to stream software from vDisks, as needed, to target devices.
• **Stores** represent the logical name for the physical location of the virtual disk folder.
• **Device collections** to create and manage logical groups of target devices.
• **Target devices** represent desktops, servers, or any other component that gets software from a virtual disk on the network.
• **vDisks** are streamed to target devices by the Provisioning Server.
• **Views** used to manage a group of target devices.

Farms

May 22, 2019

A farm represents the top level of a Citrix Provisioning infrastructure. Farms provide a method of representing, defining, and managing logical groups of provisioning components into sites.

All sites within a farm share that farm’s Microsoft SQL database. A farm also includes a Citrix License Server, local or network shared storage, and collections of target devices.

The farm is initially configured when you run the Configuration Wizard. The wizard prompts you for the farm’s name, a store, and a device collection. When you first open the Citrix Provisioning console, those objects display in the tree.

The wizard prompts you for more farm information. Such as the name of the license server, your user account information, and those servers serving the bootstrap file to target devices. You can always rerun the wizard to change settings, or choose to make farm configuration changes using the **Farm Properties Dialog**.

A farm administrator can view and manage all objects in any farm to which they have privileges. Only farm administrators can perform all tasks at the farm level.

Connecting to a farm

1. Right-click on a console in the navigation tree, then select **Connect to farm**.
2. In the **Server Information** field, type the name or IP address of a streaming server on the farm and the port configured for server access.
3. Select to log in using one of the following methods:
 - Use your current Windows login credentials, then optionally enable the **auto-login on application start or reconnect** feature.
• Use different Windows credentials by entering the user name, password, and domain associated with those credentials. Optionally enable the **Save password** and **auto-login on application start or reconnect** feature.

4. Click **Connect**. The **Farm** icon appears in the console.

Managing connections

You can manage connections to farms from the **Manage Connections** dialog box. To open the dialog, right-click on the Citrix Provisioning console icon in the tree, then select the **Manage Connections** menu option.

Sites

May 22, 2019

A site allows you to manage logical groupings of Citrix Provisioning servers, device collections, and local shared storage. A site administrator can perform any task that a device administrator or device operator within the same farm can perform.

A site administrator can also perform the following tasks:

Farm-level tasks:

• Managing site properties, as described in this article: Managing Stores

Some site-level tasks include:

• Defining device administrator and device operator roles.
• Managing provisioning servers
• Managing connections
• Creating a site in a farm, as described in this article: Rebalancing devices on the provisioning server
• Importing target devices into collections
• Accessing auditing information

To create a site:

1. Right-click on the sites folder in the farm where you want to add the new site. The **Site Properties** dialog appears.
2. On the **General** tab, type the name and a description for the site in the appropriate text boxes.
3. On the **Security** tab, click **Add** to add security groups that have the site administrator rights in this site. The **Add Security Group** dialog appears.
4. Check the box next to each group, then click OK. Optionally, check the **Domains/Group Name** check box to select all groups in the list.

5. On the **Options** tab, if new target devices are to be added using the **Auto-Add** feature, select the collection where these target devices reside. Enable this feature first in the **Farm** properties dialog.

To modify an existing site’s properties, right-click on the site in the Citrix Provisioning console, then select **Properties**. Make modifications in the **Site Properties** dialog. The tabs in this dialog allow you to configure a site. Site administrators can also edit the properties of a site that they administer.

The **Site Properties** dialog contains the following tabs.

General Tab:
- **Name:** Type the name of this site in the textbox.
- **Description:** Optional. Type the description of this site in the textbox.

Security Tab:
- **Add:** Click **Add** to open the **Add Security Groups** dialog. Check the box next to each group to which site administrator privileges apply. To add all groups that are listed, check the **Domain\Group Name** check box.
- **Remove:** Click **Remove** to remove site administrator privileges to select groups. To remove all groups that are listed, check the **Domain\Group Name** check box.

MAK Tab:
- **Enter the administrator credentials used for Multiple Activation Key enabled Devices:** MAK administrator credentials must be entered before target devices using MAK can be activated. The user must have administrator rights on all target devices that use MAK enabled vDisks and on all provisioning servers that stream those target devices. After entering the following information, click **OK**:
 - User
 - Password

 Note: If credentials have not been entered and an activation attempt is made from the **Manage MAK Activations** dialog, an error message displays. The **MAK** tab appears, allowing you to enter the credential information. After entering credentials, click **OK** and the **Manage MAK Activations** dialog reappears.

Options Tab:
- **Auto-Add:** Select the collection for the new target device from the menu. Enable this feature first in the **Farm** properties dialog. Set the number of seconds to wait before Citrix Provisioning scans for new devices specified in the **Seconds between inventory scans** option. The default is 60 seconds.
vDisk Update Tab:

- **Enable automatic vDisk updates on this site**: Select this check box to enable automatic vDisks updates, then select the server running the updates for this site.

Servers

May 22, 2019

A Citrix Provisioning server is any server that has stream services installed. Provisioning servers are used to stream software from virtual disks, as needed, to target devices. In some implementations, these disks reside directly on the provisioning server, and in other environments, provisioning servers get the virtual disk from a shared storage device.

Provisioning servers also retrieve and provide configuration information to and from the Citrix Provisioning database. Configuration options are available to ensure high availability and load-balancing of target device connections.

To configure a provisioning server and software components for the first time, run the Configuration Wizard. The Configuration Wizard can be rerun on a provisioning server later to change network configuration settings.

After the server components are installed, they are managed using the Citrix Provisioning console.

Tip:

When configuring provisioning servers, ensure that proper firewall isolation is observed so that the deployment provides a robust security boundary around all servers. Extend this isolation to the SQL server and disk storage, so that network access outside the security boundary is restricted. This configuration prevents viewing of weakly authenticated or unencrypted data flows.

At a minimum, isolate only those server instances that communicate with one another on their unauthenticated intra server communication channels. To isolate server instances, configure hardware firewalls to ensure that packets cannot be routed from outside this boundary to servers within the boundary. Extend this firewall protection paradigm to the SQL server and disk storage components where configurations do not have appropriate SQL server and disk storage links. Extending the firewall prevents unauthorized users from targeting these additional components.

Provisioning servers in the console

A provisioning server is any server that has Stream Services installed. These servers are used to stream software from vDisks, as needed, to target devices. In some implementations, vDisks reside directly on
the provisioning server. In larger implementations, servers get the virtual disk from a shared-storage device on the network.

The Citrix Provisioning console is used to perform provisioning server management tasks such as editing the configuration settings or the properties of existing provisioning servers.

Servers appear in the console main window as members of a site within a farm. To manage servers that belong to a specific site, you must have the appropriate administrative role. These roles include site administrator for this site, or the farm administrator.

Note:
In the console, the appearance of the provisioning server icon indicates that server’s status.

In the console, provisioning servers are managed by performing actions on them. To view a list of actions that can be performed on a selected server, choose from the following options:

- Click the **Action** menu in the menu bar.
- Right-click on a **provisioning server** in the console.
- Enable the **Action** pane from the **Views** menu.

Note:
Actions appear disabled if they do not apply to the selected provisioning server. See **Management Tasks** for task details.

Showing Citrix Provisioning server connections

To view and manage all target device connections to the provisioning server:

1. Highlight a provisioning server in the console. Select **Show connected devices** from the **Action** menu, right-click menu, or **Action** pane. The **Connected Target Devices** dialog appears.
2. Select one or more target devices in the table to perform any of the following connection tasks:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>Shuts down target devices that are highlighted in the dialog.</td>
</tr>
<tr>
<td>Reboot</td>
<td>Reboots target devices that are highlighted in the dialog.</td>
</tr>
<tr>
<td>Message</td>
<td>Opens the Edit Message dialog to allow you to type, and then send a message to target devices highlighted in the dialog.</td>
</tr>
</tbody>
</table>
Note: When selecting **Shutdown** or **Reboot**, a dialog opens providing the option to type a message that displays on the affected devices. The **Shutdown** or **Reboot** options can be delayed by entering a delay time setting.

If a message confirms that the target device was successfully shut down or rebooted, but the icon in the console window does not change, select the **Refresh** button.

Balancing the target device load on provisioning servers

To achieve optimum server and target device performance within a highly available network configuration, enable load balancing for each virtual disk.

1. Right-click on the **vDisk** in the console, then select the **Load Balancing** menu option. The **vDisk Load Balancing** dialog box appears. For details, see **Servers**.
2. After enabling load balancing for the virtual disk, set the following extra load balancing algorithm customizations:
 - **Subnet Affinity** – When assigning the server and NIC combination to use to provide this virtual disk to target devices, select from the following subnet settings:
 - None – ignore subnets. Uses the least busy server. None is the default setting.
 - Best Effort – use the least busy server/NIC combination from within the same subnet. If no server/NIC combination is available within the subnet, select the least busy server from outside the subnet. If more than one server is available within the selected subnet, perform load balancing between those servers.
 - Fixed – use the least busy server/NIC combination from within the same subnet. Perform load balancing between servers within that subnet. If no server/NIC combination exists in the same subnet, do not boot target devices assigned to this virtual disk.
 - **Rebalance Enabled using Trigger Percent** – Enable this option to rebalance the number of target devices on each server when the trigger percent is exceeded. When enabled, Citrix Provisioning checks the trigger percent on each server approximately every 10 minutes. For example: If the trigger percent on this virtual disk is set to 25%, rebalancing occurs within 10 minutes if this server has 25% more load in comparison to other servers that can provide this virtual disk.

 Note:

 The load balance algorithm considers the **Server power setting** of each server when determining load.

Load balancing fails if:

- Less than five target devices are using a particular server.
- The average number of target devices using all qualifying servers is less than five.
The number of target devices that are booting on a given server is more than 20% of the total number of devices connected to the server. This configuration prevents load shift thrashing during a boot storm.

Load balancing is also considered when a target device boots. Citrix Provisioning determines which qualified provisioning server, with the least amount of load, provides the virtual disk. Whenever more qualified servers are brought online, rebalancing occurs automatically.

To implement load balancing in a high availability network configuration

- Assign a power rating to each provisioning server on the **Server properties’ General tab**.
- For each virtual disk, select the load balancing method and define any additional load balancing algorithm settings on the **vDisk Load Balancing** dialog box. For details, see **Servers**.

Note:

Target devices that not using a virtual disk in high availability mode are not diverted to a different server. If a virtual disk is misconfigured to have high availability enabled, but they are not using a valid high availability configuration. Provisioning servers, stores and target devices that use that virtual disk can lock up.

To rebalance provisioning server connections manually

1. In the Citrix Provisioning console, highlight the provisioning servers to rebalance, right-click then select the **Rebalance devices** menu option. The **Rebalance Devices** dialog appears.
2. Click **Rebalance**. A rebalance results message displays under the **Status** column.
3. Click **Close** to exit the dialog.

Checking for provisioning server virtual disk access updates

To check for updates to vDisks that the selected provisioning server accesses:

1. Right-click the provisioning server in the **Details** pane, then select **Check for updates**.
2. Select the **Automatic…** menu option.
3. Click **OK** on the confirmation message that appears. The virtual disk is automatically updated or is scheduled for an update.

Disabling write cache to improve performance when using storage device drives

Disable write caching to improve the performance when writing from a provisioning server to storage device drives such as an IDE or SATA drive.
In Windows, to disable write caching on the server hard drive for the storage device on which your vDisks are stored:

2. Double-click the Disk Management node in the tree.
3. Right-click the storage device for which Windows write caching is disabled.
4. Select Properties, then click the Hardware tab.
5. Click the Properties button.
6. Click the Policies tab.
7. Clear the Enable write caching on the disk check box.
8. Click OK, then click OK again.
9. Close the Computer Management window, then the Administrative Tools window.
10. Right-click the provisioning server node in the console, then click Restart service. Alternatively, you can also rerun the Configuration Wizard to restart the services, or manually restart the services through the Windows Control Panel>Administrative Tools>Services window. At the Services window, right-click on the Stream Service, then select Start from the shortcut menu.

Providing provisioning servers with access to stores

For each store, select the provisioning servers that can access that store:

1. In the Citrix Provisioning console, right-click on the Store, then select the Properties menu option. The Store Properties dialog appears.
2. On the Servers tab, select the site where provisioning servers access this store.
3. Enable the check box next to each provisioning server that can provide vDisks in this store, then click OK.

Stores

May 22, 2019

A store is the logical name for the physical location of the virtual disk folder. This folder can exist on a local server or on a shared storage device. When virtual disk files are created in the Citrix Provisioning console, they are assigned to a store. Within a site, one or more Citrix Provisioning servers are given permission to access that store to serve virtual disks to target devices.
A provisioning server checks the database for the store name and the physical location where the virtual disk resides, then provides it to the target device.

Separating the physical paths to a virtual disk storage location allows for greater flexibility within a farm configuration. Particularly if the farm is configured to be highly available. In a highly available implementation, if the active provisioning server in a site fails, the target device can get its virtual disk from another server that has access to the store and permissions to serve it.

If necessary, copies of virtual disks are maintained on a secondary shared storage location if that connection to the primary shared storage location is lost. In this case, the default path is set in the store properties if all provisioning servers can use the same path to access the store. If a particular server cannot use the path then an override path can be set in the store properties for that particular server. Use an override path when the default path is not valid for that server. This does not occur because of
a connection loss, but because the path is not valid. Provisioning servers always use the default path if the override path does not exist in the database.

Store administrative privileges

Stores are defined and managed at the farm level by a farm administrator. Access or visibility to a store depends on the users administrative privileges:

- Farm administrators have full access to all stores within the farm.
- Site administrators have access to only those stores owned by the site.
- Device administrators and device operators have read-only access. Site administrators also have read-only access if that store exists at the farm level, or if that store belongs to another site.

Creating a store

1. In the Citrix Provisioning console tree, right-click on Stores, then select the Create store menu option. The Store Properties dialog appears.

2. On the General tab, type the store name and a description of this store. The store name is the logical name for this storage location.

3. Optionally, select the site that acts as the owner of this store. Otherwise, accept the default <None> so that only farm administrators can manage this store.

4. On the Servers tab, select a site from the list. All provisioning servers in that site appear.

5. Check the box next to each server that is permitted to access this store. If the store is only for a specific site, only those servers within that site are valid selections. Also, if the default path is not valid for a selected server, an override path must be defined for that server on the Server Properties dialogs Store tab. Repeat this step for each site if necessary. If the site administrator performs this procedure, only those sites that they administer appear.

6. On the Paths dialog, type or browse for the default path for this store. The path represents the physical location of the virtual disk folder. Optionally, a new folder can be created by clicking the Browse button, and then clicking Create New Folder. If the user is a site administrator, only those sites that they administer are available in the list.

7. The write cache path for the selected store display under the paths list. Optionally, a new store cache folder can be created by clicking the Browse button, and then clicking Create New Folder. More write cache paths can be added for use by the store by clicking Add. Entering more than one write cache paths allows for virtual disk load to be distributed to physically different drives. When a target device first connects, the Stream Service picks from the list. When using high availability, the order of the write-cache paths for any override paths in store
properties for that server must match. The order of the write-cache paths specified must be the same.

If a write cache path is not selected and the OK button is clicked, the user is prompted to create the default write cache path. Click OK on this message to create the default write cache path, C:pvsstore\WriteCache.

8. After configuring the store and paths used by the store, click Validate to open the Validate Store Paths dialog and validate the path settings.

9. Under the Status column, view the path validation results. Click Close to close this dialog and return to the Store Properties dialog to make any necessary changes or to continue.

10. Click OK to save property settings.

Store properties

Create a store by running the Configuration Wizard or in the Store Properties dialog. The store properties dialog allows you to:

• name and provide a description of the store.
• select the owner of the store, the site which manages the store.
• provide a default path to the store, the physical path to the virtual disk.
• define default write cache paths for this store.
• select the servers that can provide this store.

After a store is created, store information is saved in the Citrix Provisioning database. Each site has one virtual disk pool, which is a collection of virtual disk information required by Citrix Provisioning servers that provide vDisks in that site. The virtual disk information can be added to the virtual disk pool using the vDisk Properties dialog or by scanning a store for new vDisks that have not yet been added to the database.

The Store Properties dialog includes the following tabs:

General:

• Name:
 – View, type the logical name for this store. For example, Provisioning-1.
 – View or type a description of this store.
• Description: View or type a description for this store.
• Site that acts as owner of this store: Optional. View or scroll to select the site that acts as owner of this store. This feature allows a farm administrator to give one site’s administrators, special permission to manage the store. These rights are normally reserved for farm administrators.

Paths:
• **Default store path:** View, type, or browse for the physical path to the virtual disk folder that this store represents. The default path is used by all provisioning servers that do not have an override store path set.

 Note:

 If you are setting an override store path in the **Server Properties** dialog, the path must be set before creating a version of the virtual disk. Because this path information is stored and referenced in the .vhdx header information, changing the path after versioning can cause unexpected results.

• **Default write cache paths:** View, add, edit, remove, or move the default write cache paths for this store. Entering more than one write cache path allows for virtual disk load to be distributed to physically different drives. When a target device first connects, the Stream Service picks from the list. The order of the write cache paths, for any override paths in the server store properties, must match the order of the write cache paths specified here.

• **Validate:** Click to validate store path selections from the **Validate Store Paths** dialog. The validation results display under the **Status** column.

Servers:

• **Site:** View or scroll to select the site where provisioning servers that can access this store exist. Multiple sites can access the same store.

• **Servers that provide this store:** All provisioning servers within the selected site display in this list. Check the box next to all servers that are permitted to access this store. If the store is only for a specific site, only those servers within that site are valid selections. If the default path is not valid for a selected provisioning server, you must define an override path in that server properties dialog, on the **Store** tab.

• **Validate:** Click to validate store path selections from the **Validate Store Paths** dialog. The validation results display under the **Status** column.

Device collections

May 22, 2019

Use device collections to create and manage logical groups of target devices. Creating device collections simplifies device management by performing actions at the collection level rather than at the target-device level.

Note:

A target device can only be a member of one device collection.
A device collection might represent a physical location, a subnet range, or a logical grouping of target devices. A collection might consist of all target devices that use a particular virtual disk image, and that target device collection might consist of maintenance, test, and production devices. Alternatively, three device collections might exist for a particular virtual disk: one consisting of production devices, one consisting of test machines, and another consisting of maintenance machines. In the proceeding examples, devices in a given collection are assigned to the same disk.

Depending on a site's preference, another collection use case might include the consolidation of test or maintenance devices into a single device collection. Then manage virtual disk assignments on a per device basis rather than a per collection basis. For example, create a device collection labeled Development consisting of five target devices, each one assigned to a particular virtual disk.

Farm administrators create and manage device collections, or site administrators that have security privileges to that site. Collections are also created and managed by device administrators that have security privileges to that collection.

Expanding a device collection folder in the Citrix Provisioning console's tree allows you to view members of a device collection. To display or edit a device collection's properties, right-click on an existing device collection in the console, then select the Properties menu option. The Device Collection Properties dialog appears. Use this dialog to view or modify that collection.

Tip:
You can perform actions on members of a device collection, such as rebooting all target devices members in this collection.

Importing target devices into a collection

The Import Target Devices Wizard allows you to import the target device information from a file. Save the target device information as a .csv file, then import it into a device collection.

Note:
The .csv text file can be created with a .txt file, NotePad.exe, or Excel. It contains one line per target device, which is formatted as:
DeviceName,MAC-Address,SiteName,CollectionName,Description,Type
Where:
DeviceName = Name of new target device MAC-Address = MAC address of new device; such as 001122334455, 00-11-22-33-44-55, or 00:11:22:33:44:55
Type = 0 for production, 1 for test, or 2 for maintenance

Access the wizard from the farm, site, and device collection right-click menus. If it's accessed from the site or collection, only those target devices in the import file matching the site and collection by name
are included in the import list.

The wizard also provides the option to automatically create the site or collection using the information in the file, if either does not exist. There is also the option to use the default collection's device template, if it exists for that collection.

A log file is generated with an audit trail of the import actions. The file is located in:

C:\Documents and Settings\All Users\Application Data\Citrix\Provisioning Services\log

To import target devices into a collection

1. In the console, right-click on the device collection, then click **Target Device>Import devices**. The **Import Target Devices Wizard** displays.
2. Type or browse for the file to import. The target device information is read from the file and displays in the table. Information can include the target device name, MAC address, and optionally description.
3. Highlight one or more target devices to import. If applying the collection template to the imported target devices, select the **Apply collection template device** when creating devices check box.
4. Click **Import** to import the .csv text file containing target device information, into the selected collection. The status column indicates if the import was successful.

Refreshing a collection in the Citrix Provisioning console

After changing a collection, refresh the collection before those changes appear in the console. To refresh, right-click on the collection in the tree, then select the **Refresh** menu option.

Booting target devices within a collection

To boot target devices within a collection:

1. Right-click on the collection in the console, then select the **Target Device>Boot** menu option. The **Target Device Control** dialog displays with the **Boot devices** menu option selected in the **Settings** menu. Target devices display in the **Device** table.
2. Click the **Boot** devices button to boot target devices. The **Status** column displays the **Boot Signal** status until the target device successfully receives the signal, then status changes to **Success**.

Restarting target devices within a collection

To restart target devices within a collection:
1. Right-click on the collection in the console tree, then select the **Target Device>Restart** devices menu option. The **Target Device Control** dialog displays with the **Restart devices** menu option selected in the **Settings** menu. Devices display in the **Device** table.

2. Type the number of seconds to wait before restarting target devices in the **Delay** text box.

3. Type a message to display on target devices in the **Message** text box.

4. Click the **Restart devices** button to restart target devices. The **Status** column displays the restart signal status until the target device successfully receives the signal, then status changes to **Success**.

Shutting down target devices within a collection

To shut down target devices members within a collection:

1. Right-click on the collection in the console, then select the **Target Device>Shutdown** devices menu option. The **Target Device Control** dialog displays with the **Shutdown devices** menu option selected in the **Settings** menu. Target devices display in the **Device** table.

2. Type the number of seconds to wait before shutting down target devices in the **Delay** text box. Type a message to display on target devices in the **Message** text box.

3. Click the **Shutdown devices** button to shut down target devices. The **Status** column displays the shutdown signal status until the target device shuts down. As each target device successfully shuts down, the status changes to **Success**.

Sending messages to target devices within a collection

To send a message to target device members within a collection:

1. Right-click on the collection in the console tree, then select the **Target Device>Send message** menu option. The **Target Device Control** dialog displays with the **Message to devices** menu option selected in the **Settings** menu. Target devices display in the **Device** table.

2. Type a message to display on target devices in the **Message** text box.

3. Click the **Send message** button. The **Status** column displays the message signal status until the target device successfully receives the message, then the status changes to **Success**.

Moving collections within a site

Target devices can be moved from one collection to another collection within the same site.
To move a collection

1. In the console, expand the collection, right-click on the target device, then select the Move menu option.
2. From the menu, select the collection to move this target device into, then click OK to close the dialog.

Target devices

May 22, 2019

A device, such as desktop computer or server, that boots and gets software from a virtual disk on the network is considered a target device. A device that is used to create the virtual disk image is considered a master target device.

The lifecycle of a target device includes:

- Preparing
 - A Master target device used for creating a virtual disk image
 - A target device that boots from a virtual disk image
- Adding target devices to a collection in the farm
 - From the Console
 - Using Auto-Add
 - Importing
- Assigning the target device type
- Maintaining target devices in the farm

After a target device is created, the device must be configured to boot from the network. The device must be configured to allow it to boot from the network. Also, a virtual disk must be assigned to the device, and a bootstrap file must be configured to provide the information necessary for that device to boot from the assigned virtual disk.

There are several types of target devices within a farm. For example, while a device is being used to create a virtual disk image, it is considered a Master target device. All other devices are configured as a particular device type. The device Type determines a devices current purpose, and determines if that device can access a particular virtual disk version that is in production, test, or maintenance.

The device Type is selected on the General tab of the Target Device Properties dialog, which includes the following options:

- Production: Select this option to allow this target device to stream an assigned virtual disk that is currently in production, the default.
• Maintenance: Select this option to use this target device as a maintenance device. Only a maintenance device can access and alter a virtual disk version that is in maintenance mode. Only the first maintenance device to boot the version while in maintenance mode is allowed to access that version.
• Test: Select this option to use this target device to access and test differencing disk versions that are currently in test mode.

A target device becomes a member of a device collection when it is added to the farm. The use of device collections simplifies the management of all target devices within that collection. A target device can only be a member in one device collection. However, a target device can exist in any number of views. If a target device is removed from the device collection, it is automatically removed from any associated views.

When target devices are added to a collection, that devices properties are stored in the Citrix Provisioning database. Target device properties include information such as the device name and description, boot method, and virtual disk assignments (see Target device properties for details).

Target devices are managed and monitored using the Console and Virtual Disk Status Tray utilities.

In the Citrix Provisioning console, actions can be performed on:
• An individual target device
• All target devices within a collection
• All target devices within a view

Target device properties

Note:

A reboot is required if a target device is active when modifications are made to any of the following device properties: Boot from, MAC, Port, vDisks for this device.

The following tables define the properties associated with a target device.

General tab
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the target device or the name of the person who uses the target device. The name can be up to 15 bytes in length. However, the target device name cannot be the same as the machine name being imaged. Note: If the target device is a domain member, use the same name as in the Windows domain. Use the same name unless that name is the same as the machine name being imaged. When the target device boots from the virtual disk, the name entered here becomes the target device machine name.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a description to associate with this target device.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Type</td>
<td>Select the access type for this target device from the menu, which includes the following options: Maintenance - Select this option to use this target device as a maintenance device which applies updates to a new maintenance version of a virtual disk. A maintenance device has exclusive read-write access to a maintenance version. Test - Select this option to use this target device to access versions that are in test mode. Test devices have shared read-only access to the test versions of a virtual disk to facilitate QA testing of a virtual disk version in standard image mode. Perform this task before releasing that version to production machines. Production - Select this option to allow the target device to stream an assigned virtual disk that is currently in production. Production devices have shared, read-only access to production versions of a virtual disk. Production devices do not have access to maintenance or test versions. This prevents untested updates from accidentally being deployed on production machines. Note: The default Type for a new device is maintenance. The default type for an existing device is maintenance.</td>
</tr>
<tr>
<td>Boot from</td>
<td>The boot method used by this target device. Options include booting from a virtual disk, hard disk, or floppy disk.</td>
</tr>
<tr>
<td>MAC</td>
<td>Enter the media access control (MAC) address of the NIC that is installed in the target device.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays the UDP port value. In most instances, you do not have to change this value. However, if target device software conflicts with any other IP/UDP software, that is, they are sharing port, you must change this value.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Class used for matching new vDisks to target devices when using automatic disk image update to match new vDisks images to the appropriate target devices.</td>
</tr>
<tr>
<td>Disable this device</td>
<td>Enable this option to prevent target devices from booting. Regardless if enabled or disabled, new target devices that are added using Auto-add, have records created in the database.</td>
</tr>
</tbody>
</table>

Virtual disk tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vDisks for this device</td>
<td>Displays the list of virtual disk assigned to this target device, including the following options: Click Add to open the Assign vDisks dialog. To filter the displayed vDisks, select a specific store name and Provisioning Server or select All Stores and All Servers. This process lists all vDisks available to this target device. Highlight the vDisks to assign, then click OK. Click Remove to remove vDisks from this device. Click Printers to open the Target Devices vDisk Printers dialog. This dialog allows you to choose the default printer and any network and local printers to enable or disable for this target device.</td>
</tr>
</tbody>
</table>

Personality tab
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>Provides secondary boot options: Include the local hard drive as a boot device; include one or more custom bootstraps as boot options. If enabling a custom bootstrap, click Add, to enter the bootstrap file name and the menu text to appear (optional), then click OK. If more than one virtual disk is listed in the table or if either (or both) secondary boot options are enabled, you are prompted with a disk menu when it is booted. Enter a menu option name to display to the target device. The target device can select which boot options to use. Click Edit to edit an existing custom bootstrap’s file name or menu text. Click Remove to remove a custom bootstrap file.</td>
</tr>
<tr>
<td>Name and string</td>
<td>There are no fixed limit to the number of names you can add. However, the maximum name length is 250 characters and the maximum value length is 1000 characters. Use any name for the field Name, but do not repeat a field name in the same target device. Field names are not case sensitive. In other words, the system interprets <code>FIELDNAME</code> and <code>fieldname</code> as the same name. Blank spaces entered before or after the field name are automatically removed. A personality name cannot start with a $. This symbol is used for reserved values such as <code>$DiskName</code> and <code>$WriteCacheType</code>.</td>
</tr>
</tbody>
</table>

Authentication tab

Password information entered in this dialog is for the initial target device login process only. It does not affect the Windows account login.
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>If authenticating with a username and password, enter the username for the account. Follow your organization's user name conventions. Note: User names must be at least two characters and no more than 40 characters in length. User names are NOT case sensitive. Authentication methods include: None, user name and password, and External verification (user supplied method).</td>
</tr>
<tr>
<td>Username</td>
<td>If the account exists, you cannot change the user name.</td>
</tr>
<tr>
<td>Password</td>
<td>If authenticating with a username and password: Click the Change button to open the Change Password dialog. To create a password for a user account, type the old password, then type the new password. Confirm the new password. Click OK to change the password. Note: Follow your organization's password conventions. Requires passwords be at least three characters and no more than 20 characters in length. Passwords ARE case sensitive. Reenter the new password exactly as you entered it in the previous field to confirm it.</td>
</tr>
</tbody>
</table>

Status tab
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device status</td>
<td>The following target device status information appears: Status - current status of this device (active or inactive); IP Address - provides the IP Address or ‘unknown’; Server - the provisioning server that is communicating with this device; Retries - the number of retries to permit when connecting to this device; vDisk - provides the name of the vDisk or displays as ‘unknown’; vDisk version - version of this vDisk currently being accessed; vDisk full name - the full file name for the version currently being accessed; vDisk access - identifies if the version is in production, maintenance, or test; License information - depending on the device vendor, displays product licensing information including; n/a, Desktop License, Datacenter License, or Citrix Virtual Apps and Desktops License.</td>
</tr>
</tbody>
</table>
Field: Logging level

Select the logging level or select **Off** to disable logging: **Off** – Logging is disabled for this provisioning server. **Fatal** – logs information about an operation that the system might not recover from; **Error** – logs information about an operation that produces an error condition; **Warning** – logs information about an operation that completes successfully, but there are issues with the operation; **Info** – Default logging level. Logs information about workflow, which generally explains how operations occur. **Debug** – logs details related to a specific operation and is the highest level of logging. If logging is set to **DEBUG**, all other levels of logging information are displayed in the log file. **Trace** – logs all valid operations.

Setting the target device as the template for this collection

A target device can be set as the template for new target devices that are added to a collection. A new target device inherits the properties from the template target device, which allows you to quickly add new devices to a collection.

Tip

Target devices using virtual disks are created and added to a collection when running the Citrix Virtual Apps and Desktops Setup Wizard. If a target device template exists, it is ignored when the target device using a virtual disk is added to the collection.

To set a target device as the template device for a collection, in the console, right-click on the target device, then select the **Set device as template** option.

Consider the following when using templates:

- Disable the target device that serves as the template. Disabling it adds all target devices using this template to the database, but does not permit the target device to boot.
- Target devices receive a message requesting that they first contact the administrator before being allowed to boot.
- **T** appears in light blue on the device serving as the template. New target devices automatically...
have a name generated and all other properties are taken from the default template target device. No user interaction is required.

Creating a VM with nested virtualization

Sometimes, you want to create a nested virtualization paradigm for a VM. If your environment uses Device Guard and you want to create a template from the VM running it, consider that Citrix Provisioning is unaware that it was set up for that particular VM. To resolve this issue, manually enable Device Guard on the Hyper-V host using a PowerShell command. Perform this operation after the VM has been created using the Citrix Virtual Apps and Desktops Setup Wizard.

To configure a VM to use Device Guard:

1. Create the VM using the Citrix Virtual Apps and Desktops Setup Wizard.
2. After creating the VM, execute the following command for each VM on the physical Hyper-V host to enable nested virtualization:

   ```powershell
   Set-VMProcessor -VMName <Target VM’s Name> -ExposeVirtualizationExtensions $true
   ``

   **Tip:**
   See the Microsoft site for more information about nested virtualization.

Copying and pasting target device properties

To copy the properties of one target device, and paste those properties to other target device members:

**Note:** Target devices that use virtual disks can only inherit the properties of another target device that uses one.

1. In the Citrix Provisioning console’s Details pane, right-click on the target device that you want to copy properties from, then select Copy device properties. The Copy Device Properties dialog appears.
2. Select the check box next to the properties that you want to copy, then click Copy. The properties are copied to the clipboard and the dialog closes.
3. Right-click on one or more target devices that inherit the copied properties, then select the Paste menu option. The Paste Device Properties dialog appears.
4. Click Close to close the dialog.
**Booting target devices**

1. Right-click on a collection to boot all target devices in the collection. Or, highlight only those target devices that you want to boot within the collection tree, then select the **Boot devices** menu option. The **Target Device Control** dialog displays with the Boot devices menu option selected in the **Settings** menu.

2. Click the Boot devices button to boot target devices. The **Status** column displays the **Boot Signal** status until the target device successfully receives the signal, then status changes to **Success**.

**Checking a target device’s status from the console**

The target device status indicates whether it is active or inactive on the network.

To check the status of a target device:

1. Double-click on the target device in the console window, then select the **Properties** menu option. The **Device Properties** tab appears.

2. Select the **Status** tab and review the following status information:
   - Status, active, or inactive
   - IP address
   - Current provisioning server
   - Current virtual disk name
   - Provisioning server cache file size in bytes
   
   If the target device is active in the console window, the target device icon appears as a green computer screen. If the target device is inactive, the icon appears as a black computer screen.

**Sending messages to target devices**

To send a message to target devices members:

1. Right-click on the collection to send a message to all members within the collection. Or, highlight only those target devices within the collection that receive the message, then select the **Send** message menu option. The **Target Device Control** dialog displays with the Message to devices menu option selected in the **Settings** menu. Target devices are displayed in the **Device** table.

2. Type a message to display on target devices in the **Message** text box.

3. Click the Send message button. The **Status** column displays the **Message Signal status** until target devices successfully receives the message, the status changes to **Success**.
Shutting down target devices

To shut down target devices:

1. Right-click on the collection to shut down all target devices within the collection. Or, highlight only those target devices to shut down within a collection, then select the **Shutdown devices** menu option. The **Target Device Control** dialog displays with the Shutdown devices menu option selected in the **Settings** menu. Target devices display in the Device table.
2. Type the number of seconds to wait before shutting down target devices in the **Delay** text box.
3. Type a message to display on target devices in the **Message** text box.
4. Click the **Shutdown devices** button to shut down target devices. The **Status** column displays the shutdown signal status until the target device shuts down. As each target device successfully shuts down, the status changes to **Success**.

Restarting target devices

To restart target devices:

1. Right-click on a collection in the console tree or highlight only those target devices you want to restart within the collection. Select the **Restart devices** menu option. The **Target Device Control** dialog displays with the Restart devices menu option selected in the **Settings** menu. Target devices display in the **Device** table.
2. Type the number of seconds to wait before restarting target devices in the **Delay** text box.
3. Type a message to display on target devices in the **Message** text box.
4. Click the **Restart devices** button to restart target devices. The **Status** column displays the Restart Signal status until the target device successfully receives the signal, then status changes to **Success**.

Moving target devices between collections

A target device can be moved from one collection to another collection within a site by dragging it into the console’s **Details** pane. Drag the device from one collection, then drop the device into another collection. Alternatively, target devices can be moved using the **Move** menu option.

To move a target device using the **Move** menu option:

1. In the console, expand the collection, right-click on the target device in the **Details** pane, then select the **Move** menu option.
2. From the menu, select the collection to move this target device into. If necessary, apply the collection’s device template to the target device being moved by enabling the option **Apply target collection’s template device properties**.
3. Click **Move**.
Managing target device personality

Normally, all target device’s sharing virtual disk must have identical configurations. The Target Device Personality feature allows you to define data for specific target devices and make it available to the target device at boot time. This data is used by your custom applications and scripts for various purposes.

For example, suppose you are using a provisioning server to support PCs in three classrooms. Each classroom has its own printer, and you want the PCs in each classroom to default to the correct printer. By using the Target Device Personality feature, you can define a default printer field, and then enter a printer name value for each target device. You define the field and values under Target Device Properties. This information is stored in the database. When the target device boots, the device-specific printer information is retrieved from the database and written to an .INI file on the virtual disk. Using a custom script or application that you develop, you can retrieve the printer value and write it to the registry. Using this method, each time a target device boots, it is set to use the correct default printer in its classroom.

The number of fields and amount of data that you can define for each target device is limited to 64 Kb or 65,536 bytes per target device. Each individual field contains up to 2,047 bytes.

Target device personality tasks

- Define personality data for a single target device using the console
- Define personality data for multiple target devices using the console
- Using target device personality data

Define personality data from a single target device using the console

To define personality data for a single target device:

1. In the Console, right-click on the target device that you want to define personality data for, then select the Properties menu option.
2. Select the Personality tab.
3. Click the **Add** button. The **Add/Edit Personality String** dialog appears.
   
   **Note:** There is no fixed limit to the number of field names and associated strings you can add. However, the total amount of personality data assigned to a single string, names, and data, combined, is approximately 2,047 bytes. Also, the total amount of data contained in names, strings and delimiters is limited to approximately 64 Kb or 65,536 bytes per target device. This limit is checked when you attempt to add a string. If you exceed the limit, a warning message displays and you are prevented from creating an invalid configuration.

   Target device personality data is treated like all other properties. This data is inherited when new target devices are added automatically to the database. This inheritance occurs using the **Add New Target Device Silently** option, or with the **Add New Target Device with BIOS Prompts** option.

4. Enter a name and string value.
   
   **Note:** You can use any name for the field. **Name**, but you cannot repeat a field name in the same target device. Field names are not case sensitive. In other words, the system interprets FIELDNAME and fieldname as the same name. Blank spaces entered before or after the field name are automatically removed. A personality name cannot start with a $. This symbol is used for reserved values such as $DiskName and $WriteCacheType.

5. Click **OK**.

   To add more fields and values, repeat Steps 5 and 6 as needed. When finished adding data, click **OK** to exit the **Target Device Properties** dialog.

### Define personality data for multiple target devices using the console

Define target device personality for multiple devices:

1. In the console, right-click on the target device that has the personality settings that you want to share with other device, then select **Copy**. The **Copy device properties** dialog appears.
2. Highlight the target devices in the **Details** pane that you want to copy personality settings. Right-click and select the **Paste device properties** menu.
3. Click the **Personality strings** option, or, alternately choose to copy other properties. Click **Paste**.

### Using target device personality data

Once the file system becomes available to the target device, the personality data is written to a standard Windows .ini text file called Personality.ini. The file is stored in the root directory of the virtual disk file system, your custom scripts or applications access this file.

The file is formatted as follows:
This file is accessible to any custom script or application and is queried by the standard Windows .INI API. Also, a command line application, called `GetPersonality.exe`, permits easier batch file access to the personality settings.

A target device's virtual disk name and mode can be retrieved using `GetPersonality.exe`. The following reserve values are included in the `[StringData]` section of the Personality.ini file:

```ini
$DiskName=<xx>
$WriteCacheType=<0 (Private image)
All other values are standard image; 1 (Server Disk), 2 (Server Disk Encrypted), 3 (RAM), 4 (Hard Disk), 5 (Hard Disk Encrypted), 6 (RAM Disk), or 7 (Difference Disk). Min=0, Max=7, Default=0
```

The xx field is the name of the disk. A virtual disk name cannot start with a $. This symbol is used for reserved values such as $DiskName and $WriteCacheType. The following message displays if a name that starts with $ is entered:

`A name cannot start with a $. This is used for reserve values like $DiskName and $WriteCacheType. The $DiskName and $WriteCacheType values can be retrieved on the target device using GetPersonality.exe.`

**GetPersonality.exe**

The command line utility `GetPersonality.exe` allows users to access the Target Device Personality settings from a Windows batch file. The program queries the INI file for the user and places the personality strings in the locations chosen by the user. `GetPersonality.exe` supports the following command line options:

```
GetPersonality FieldName /r=RegistryKeyPath <- Place field in registry
GetPersonality FieldName /f=FileName <- Place field in file
GetPersonality FieldName /o <- Output field to STDOUT
GetPersonality /? or /help <- Display help
```

**Examples:**

Setting a Registry Key Value:

The following example retrieves the Target Device Personality data value from the `DefaultPrinter` field. It writes it to the target device registry to set the default printer for the device.
The Target Device Personality String Set in **Target Device** Properties is:

```
1 'DefaultPrinter= \CHESBAY01\SAVIN 9935DPE/2035DPE PCL 5e, winspool, Ne03: '
```

A batch file run on the target device would include the following line:

```
1 'GetPersonality DefaultPrinter /r=HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Device'
```

**Note:**
The key name is the UNC name of the network printer, such as \dc1\Main. The value entered for the key would be similar to `winspool, Ne01`: where `Ne01` is a unique number for each installed printer.

### Setting environment variables

Setting environment variables with personality data is a two-step process:

1. Use the **GetPersonality** command with the `/f` option to insert the variable into a temporary file.

2. Use the `set` command to set the variable. For example, to set the environment variable `Path` statement for the target device a personality name, define the `Pathname` with the string value:

```
1 '%%SystemRoot%%;%%SystemRoot%%\System32\Wbem;C:\Program Files\Microsoft Office\OFFICE11;C:\Program Files\Microsoft SQL Server\80\Tolls\Binn'
```

The `/f` option creates a temporary file, allowing for a name to be assigned, in this case `temp.txt`. The following lines are included in the batch file:

```
1 'GetPersonality Pathname /f=temp.txt
2 set /p Path= <temp.txt'
```

**Note:**
If the file name specified with the `/f` option exists, Get Personality does not append the line to the file. Instead, the existing line is overwritten in the file.

### Changing the device status to down

Occasionally, a target device displays as active when it is down. This situation occurs when the status record is not refreshed properly in the database. To change the target device’s status in the database to down, Complete the following steps:
1. In the console, right-click on the target device marked as down, then select the **Mark Device Down** option. A confirmation dialog appears.
2. Click **OK** to mark the device as down.

**Support for windows performance counters**

Citrix Provisioning target devices provide Windows performance counters for each storage tier:

- RAM cache
- VHDX file
- network streaming

Using these performance counters, you can monitor target device streaming IOPS, bandwidth usage, current RAM usage, and VHDX file size.
Virtual disks

May 22, 2019

Virtual disks are managed throughout their lifecycle. Full image lifecycle takes a virtual disk from creation, through deployment and subsequent updates, and finally to retirement. The lifecycle of a virtual disk consists of four stages:

1. Creating
2. Deploying
3. Updating
4. Retiring

Creating a virtual disk

Creating a virtual disk includes:

- preparing the master target device for imaging
- creating and configuring a virtual disk file where the virtual disk resides
- imaging the master target device to that file

These steps result in a new base virtual disk image. This process can be performed automatically, using the Imaging Wizard, or manually. You can also create a common image for use with a single target platform or for use with multiple targets. For details, see Creating vDisks.

Deploying a virtual disk

After a virtual disk base image is created, it is deployed by assigning it to one or more devices. A device can have multiple virtual disk assignments. When the device starts, it boots from an assigned virtual disk. There are two boot mode options; Private Image mode (single device access, read/write), and standard image mode (multiple devices, write cache options). For more details, see Prerequisites for deploying vDisks later in this article.

Updating a virtual disk

It is often necessary to update an existing virtual disk so that the image contains the most current software and patches. Updates can be made manually, or the update process can be automated using virtual disk Update Management features. Each time a virtual disk is updated a new version is created. Different devices can access different versions based on the type of target device and version classification. A maintenance device can have exclusive read/write access to the newest maintenance version. Test devices can have shared read-only access to versions classified as test versions. Production
devices can have shared read-only access to production versions. Versions are created and managed from the vDisk Versioning Dialog. An update can also be the result of merging versions. For more details on updating virtual disks, see Updating virtual disks.

Retiring a virtual disk

Retiring a virtual disk is the same as deleting. The entire VHDX chain including differencing and base image files, properties files, and lock files, are deleted. For details, see Retiring a virtual disk.

Note:

In addition to those virtual disk tasks performed within a disk's lifecycle, there are also other virtual disk maintenance tasks that can be performed. These include importing or exporting the virtual disk, backing-up vDisks, replicating, and load balancing.

Prerequisites for deploying virtual disks

Virtual disks are configured before being deployed. Configuration tasks include:

- Selecting the virtual disk access mode and if applicable, the write cache mode. See Selecting the write cache destination for standard virtual disk images.
- Configuring the virtual disk for Microsoft Volume Licensing. For details, see Configuring a virtual disk for Microsoft Volume Licensing.
- Enabling Active Directory machine account password management, if applicable.
- Enabling printer management. For details, see Managing printers.
- More settings:
  - Enabling or disabling the streaming of this virtual disk to assigned target devices. For details, see the virtual disk properties dialog.
  - Providing virtual disk identification information. For details, see identification information in the virtual disk properties dialog.

Selecting the write cache destination for standard virtual disk images

Citrix Provisioning supports several write cache destination options. The write cache destination for a virtual disk is selected on the General tab, which is available from the virtual disk File Properties dialog.

Considerations and requirements

- Consider the impact of using the server-side persistent write cache. Persistent cache is only used where unauthorized users have access to a machine. Ensure that machines are not shared
among users.

- When selecting cache on local hard drive, ensure that the hard-disk drive is formatted with NTFS for Window devices, with a minimum of 500 MB.
- When selecting cache on the target device RAM and standard image mode, the registry setting WcMaxRamCacheMB (a DWORD) in the BN1Stack Parameters determines the max size of the RAM write cache. If the registry entry does not exist, then the default value used is 3584 MB.
- Citrix Provisioning version 7.7 only supports the use of Microsoft System Center Configuration Manager (ConfigMgr) Client as follows:

<table>
<thead>
<tr>
<th>ConfigMgr Client</th>
<th>Cache on device hard drive</th>
<th>Cache in device RAM with overflow on hard disk</th>
<th>Cache in device RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigMgr 2007 - all</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012 SP1</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012 R2</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr Client</td>
<td>Cache on server</td>
<td>Cache on server persisted</td>
<td>Cache on device hard drive persisted</td>
</tr>
<tr>
<td>ConfigMgr 2007 - all</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012 SP1</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ConfigMgr 2012 R2</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

The following sections describe all valid write cache destination options.

**Note:**
Provisioning Services version 7.12 introduced Linux streaming. When using this feature, consider that caching options on a Linux target device are the same on a Windows device. For more information about Linux streaming, see Installation.

**Cache on device hard drive**

Write cache can exist as a file in NTFS format, or on the target-device's hard drive. This option frees up the server. It does not process write requests because it does not have the finite limitation of RAM.

The hard drive does not require any additional software to enable this feature.
Note:
The write cache file is temporary unless the virtual disk mode is set to Private Image mode.

Important:
The virtual disk cache type field Cache on device hard drive is deprecated and will be removed in a future release. Citrix recommends using one of the other available cache types. For more information, see the Deprecation article.

Cache on device hard drive persisted (experimental phase only)

The same as Cache on device hard drive, except cache persists. This write cache method is an experimental feature and is supported only for NT6.1 or later. This method also requires a different bootstrap. To click the correct bootstrap from the console, right-click on the provisioning server, select Configure Bootstrap. On the General tab, click the Bootstrap file option, then choose CTXBP.BIN. Citrix recommends that the local HDD (client side) drive has enough free space to store the entire virtual disk.

Important:
The virtual disk cache type field Cache on hard drive persisted is deprecated and will be removed in a future release. Citrix recommends using one of the other available cache types. For more information, see the Deprecation article.

Cache in device RAM

Write cache can exist as a temporary file in the target device’s RAM. It provides the fastest method of disk access since memory access is always faster than disk access.

Cache in device RAM with overflow on hard disk

Write cache uses the VHDX differencing format:

- When RAM is zero, the target device write cache is only written to the local disk.
- When RAM is not zero, the target device write cache is written to RAM first. When RAM is full, the least recently used block of data is written to the local differencing disk to accommodate newer data on RAM. The amount of RAM specified is the non-paged kernel memory that the target device consumes.

Compared to “Cache on device hard drive” cache mode, the VHDX block format has a faster file expansion rate. The local disk free space is reconsidered to accommodate the streaming workload. To
ensure target device reliability in a high demand workload, Citrix recommends that local disk free space is larger than virtual disk capacity size.

When the local disk is out of space, the target device virtual disk I/O goes in to a pause state. It waits for more local disk free space to become available. This condition has a negative impact on the workload continuity. Citrix recommends allocating enough local disk free space.

The amount of RAM specified does not change the local disk free space requirement. The more RAM assigned, the more virtual disk I/Os temporarily saved in RAM cache before all data gets flushed back to the VHDX file. The RAM reduces the initial VHDX expansion rate.

**Cache on a server**

Write cache can exist as a temporary file on a provisioning server. The Provisioning server handles all writes, which can increase disk I/O and network traffic.

For extra security, the server can be configured to encrypt write cache files. Since the write-cache file does exist on the hard drive between reboots, the data is encrypted in the event a hard drive is stolen.

**Cache on server persistent**

This cache option allows for the saving of changes between reboots. Using this option, after rebooting, a target device is able to retrieve changes made from previous sessions that differ from the read only virtual disk image. If a virtual disk is set to **Cache on server persistent**, each target device that accesses the virtual disk automatically has a device-specific, writable disk file created. Any changes made to the virtual disk image are written to that file, which is not automatically deleted upon shutdown.

The file name uniquely identifies the target device by including the target device’s MAC address and disk identifier. A target device can be assigned to multiple vDisks and therefore have multiple cache files associated to it.

To restore a virtual disk that uses **Cache Persistent on Server**, be sure to back up all virtual disk files and associated user cache files before making changes.

The benefits of using this cache option include:

- Saves target device specific changes that are made to the virtual disk image.
- Same benefits as standard image mode.

The drawbacks of using this cache option include:

- The cache file is available so long as the file remains valid. Any changes made to the virtual disk force the cache file to be marked invalid. For example, if the virtual disk is set to **Private Image Mode**, all associated cache files are marked invalid.
Note:
Cache files that are marked as invalid are not deleted. Periodically, these files are manually deleted.

Invalidating changes include:

- Placing a virtual disk in maintenance
- Virtual disk is placed in private image mode
- Mapping the drive from the Citrix Provisioning console
- Changing the location of the write cache file
- Using the automatic update

Tip:
Consider the impact of using a server-side persistent write cache. Persistent cache is only used where unauthorized users have access to a machine. Ensure that machines are not shared among users.

Selecting the write cache destination for standard virtual disk images

November 19, 2019

Citrix Provisioning supports several write cache destination options. The write cache destination for a virtual disk is selected on the **General** tab, which is available from the **vDisk File Properties** dialog.

Considerations and requirements:

- Consider the impact of using server side persistent write cache. Only use a persistent cache where unauthorized users have unprivileged access to a machine. Ensure that machines are not shared among users.
- If you are selecting cache on local hard drive, ensure that the hard-disk drive is formatted with NTFS for Window devices, with a minimum of 500 MB.
- When using the **Cache to Device RAM** option in standard image mode, the registry setting **WcMaxRamCacheMB** determines the maximum RAM write cache. This registry setting appears in the BNIStack parameters. It represents a **DWORD** parameter. If the registry entry does not exist, then the default value used is 3584 MB.
- Support for the Microsoft System Center Configuration Manager (ConfigMgr) Client is:
The following sections describe all valid write cache destination options.

Note:
Provisioning Services version 7.12 introduced Linux streaming. When using this feature, consider that caching options on a Linux target device are the same as on a Windows device. For more information about Linux streaming, see the installation article.

**Cache on device hard drive**

Write cache exists as a file in NTFS format on the target-device's hard drive. This write cache option frees up the Citrix Provisioning server because it does not process write requests and does not have finite limitation of RAM.

The hard drive does not require any additional software to enable this feature.

Note:
The write cache file is temporary unless the virtual disk mode is set to **Private Image mode**.

**Important:**
The virtual disk cache type field **Cache on device hard drive** is deprecated and will be removed in a future release. Citrix recommends using one of the other available cache types. For more information, see the **Deprecation** article.
Cache on device hard drive persisted (experimental phase only)

The same as cache on device hard drive, except cache persists. This write cache method is an experimental feature and is supported only for NT6.1 or later. This method also requires a different bootstrap. To select the correct bootstrap from the Citrix Provisioning console, right-click on the provisioning server, select Configure Bootstrap. On the General tab, click the menu Bootstrap file option, then choose CTXBP.BIN. Citrix recommends that the local HDD (client side) drive has enough free space to store the entire virtual disk.

**Important**

The virtual disk cache type field Cache on hard drive persisted is deprecated and will be removed in a future release. Citrix recommends using one of the other available cache types. For more information, see the Deprecation article.

Cache in device RAM

Write cache can exist as a temporary file in the target device’s RAM. This functionality provides the fastest method of disk access since memory access is always faster than disk access. The maximum RAM write cache size is determined by the registry setting WcMaxRamCacheMB.

**Tip**

For Windows 10 version 1803, the functionality cache in device RAM is not supported. A target device crashes when it fails to use reserved memory from bootstrap. Citrix recommends using Cache in device RAM with overflow on hard disk. This issue applies to legacy bootstrap, it does not apply to UEFI bootstrap configurations.

Cache in device RAM with overflow on hard disk

This write cache method uses VHDX differencing format:

- When RAM is zero, the target device write cache is only written to the local disk.
- When RAM is not zero, the target device write cache is written to RAM first. When RAM is full, the least recently used block of data is written to the local differencing disk to accommodate newer data on RAM. The amount of RAM specified is the non-paged kernel memory that the target device consumes.

Compared to Cache on device hard drive cache mode, the VHDX block format has a faster file expansion rate. The local disk free space is reconsidered to accommodate the streaming workload. To ensure target device reliability in high demand workload, Citrix recommends that local disk free space is larger than virtual disk capacity size.
When the local disk is out of space, the target device virtual disk I/O goes in to a pause state. It waits for more local disk free space to become available. This condition has a negative impact on workload continuity. Citrix recommends allocating enough local disk free space.

The amount of RAM specified does not change the local disk free space requirement. The more RAM assigned, the more virtual disk I/Os temporarily saved in RAM cache before all data gets flushed back to the VHDX file. The RAM reduces the initial VHDX expansion rate.

**Tip**

The registry setting `WcMaxRamCacheMB` is not valid when configuring the **Cache in device RAM with hard disk overflow**. When using this write cache on the provisioning management console, use the value specified from the maximum allocated size.

**Cache on a server**

Write cache can exist as a temporary file on a provisioning server. The server handles all writes, which can increase disk I/O and network traffic.

For extra security, the server can be configured to encrypt write cache files. Since the write-cache file does exist on the hard drive between reboots, the data is encrypted in the event a hard drive is stolen.

**Cache on server persistent**

This cache option allows for the saving of changes between reboots. Using this option, after rebooting, a target device is able to retrieve changes made from previous sessions that differ from the read only virtual disk image. If a virtual disk is set to Cache on server persistent, each target device that accesses the virtual disk automatically has a device-specific, writable disk file created. Any changes made to the virtual disk image are written to that file, which is not automatically deleted upon shutdown.

The file name uniquely identifies the target device by including the target device’s MAC address and disk identifier. A target device can be assigned to multiple vDisks and therefore have multiple cache files associated to it.

To restore a virtual disk that uses **Cache Persistent on Server**, be sure to back up all virtual disk files and associated user cache files.

The benefits of using this cache option include:

- Saves target device specific changes that are made to the virtual disk image.
- Same benefits as Standard Image Mode.

The drawbacks of using this cache option include:
The cache file is available so long as the file remains valid. Any changes made to the virtual disk force the cache file to be marked invalid. For example, if the virtual disk is set to **Private Image Mode**, all associated cache files are marked invalid.

**Note:**
Cache files that are marked as invalid are not deleted. Periodically, these files are manually deleted.

Invalidating changes include:

- Placing a virtual disk in maintenance
- Virtual disk is placed in private image mode
- Mapping the drive from the console
- Changing the location of the write cache file
- Using automatic update

**Tip:**
Consider the impact of using server side persistent write cache. When administering this functionality, persistent cache is only used where unauthorized users have unprivileged access to a machine. Ensure that machines are not shared among users.

**Support for replicated virtual disk storage**

May 16, 2019

Citrix Provisioning supports the replication of a virtual disk on stores that are local, local/attached storage on provisioned servers, and contained within a site.

Replication considerations include:

- All Citrix Provisioning servers must have network connectivity with all other servers in the farm.
- Replication must be properly configured to function with Citrix Provisioning and meet all requirements.
- Replicated files include: *.vhdX, *.avhdx, and *.pvp. If you are importing existing virtual disks, the *.xml manifest files can also be replicated. The *.lok files are not replicated.
- It is not necessary to shut down a server during the replication process.
- Store path must be set for each provisioning server.
Note:
If you are setting an override store path on the server’s Properties dialog, the path must be set before creating a version of the virtual disk. Because this path information is stored and referenced in the .vhdx header information, changing the path after versioning can cause unexpected results.

- Necessary storage must be available and have read/write access.

Note:
While DFS Replication can be used with Citrix Provisioning, DFS Namespaces are not supported as store paths.

The following illustration shows a replication scenario where a version is not available to all servers from local storage.

Troubleshooting and viewing replication status for a particular virtual disk

Citrix Provisioning allows users to view the availability of replicated vDisks to provisioning servers within a farm.

1. Right-click on a virtual disk in the Citrix Provisioning console, then select the Versions menu option. The vDisk Versions dialog appears.
2. Highlight a version in the dialog, then click **Replication**. The **vDisk Version Replication Status** dialog displays showing the replication status availability for each server that can provide this version of the virtual disk.

- If a version is in **Maintenance** (hammer icon), **Test** (magnifying glass), or **Pending** (hour glass) states, that state displays in the first row.
- A **blue checkmark** indicates that the server has access to this version.
- An **orange warning** indicates that a server currently does not have access to one or more versions of this virtual disk. The version that is missing, or has an issue, has an orange warning under that version column.

**Troubleshooting and viewing replication status for all versions of a virtual disk**

1. Right-click on a virtual disk in the console, then select the **Replication Status** menu option. The **vDisk Version Replication Status** dialog appears.

2. The **Server** column lists all servers that can provide this virtual disk and the general replication status of that server. The **Version** column lists each version of the virtual disk and that version's individual replication status.

- If a version is in **Maintenance** (hammer icon), **Test** (magnifying glass), or **Pending** (hour glass) states, that state displays in the first row.
- A **blue checkmark** indicates that the server has access to this version.
- An **orange warning** indicates that a server currently does not have access to one or more versions of this virtual disk. The version that is missing, or has an issue, has an orange warning under that version column.

**Exporting and importing vDisks**

May 16, 2019

Citrix Provisioning exports and imports both **versioned** and **unversioned** vDisks from an existing store to another store in a different farm.

**Tip:**

Merge differencing disks first to a base disk using third party tools if you are importing VHDs that are not exported using Citrix Provisioning. After merging them, import the new VHD base disk.
Exporting virtual disks

To export a virtual disk

1. Right-click on the virtual disk in the Citrix Provisioning console, then select the Export menu option. The Export dialog appears.
2. Select the version to export from the menu, then click OK. The manifest file is created in the Store.

Tip:
If you delete a virtual disk that you plan to export, Citrix recommends that you export the virtual disk first. After exporting it, copy the resulting XML file to the new location before deleting it from the original location.

Importing vDisks

A virtual disk or virtual disk chain of differencing VHD files can be imported into a store if:

- The imported VHD does not exist in the store and both the highest version number of the VHD and associated manifest files match.
- The VHD chain includes a base image, and that base image version number matches the base image version in the manifest file.

Note:
When importing a single virtual disk, no manifest file is required, however, if you import vDisks with versions you must include a manifest file.

- The VHD does exist in the store but the imported version number in the associated manifest file is greater than the existing VHD version number.

To add or import an existing virtual disk to a site

1. Copy the virtual disk and any associated properties files to shared storage, if they do not exist there.
2. In the console, right-click on the Store or a vDisk Pool, then select the Add or Import Existing vDisk menu option. The Add or Import Existing vDisks dialog appears.
3. Select the store to search for vDisks from the Store to search menu.
4. Select the server to use to search for vDisks from the Server to use for searching menu, then click Search. All vDisks in the store display in the Add checked vDisks to the vDisk Pool.
5. Check the vDisks you want added to the virtual disk pool.
6. Optionally, check **Enable load balancing for these vDisks** to enable load balancing on provisioning servers that provide this virtual disk to target devices.

7. Click **Add** to add the vDisk(s) to the virtual disk pool.

**Adding virtual disk versions**

**To add a virtual disk version to a site**

1. Copy the virtual disk, and any associated property files, to shared storage, if they do not exist there.
2. In the console, right-click on the **Store** or a **vDisk Pool**, then select the **Add vDisk Versions** menu option. The **Add vDisk Versions** dialog appears.
3. Select the store to search for vDisks from the **Store to search** menu.
4. Select the server to use to search for vDisks from the **Server to use for searching** menu, then click **Search**. All vDisks in the store display in the **Add checked vDisks new versions**.
5. Check those virtual disk versions added to the virtual disk pool.
6. Click **Add** to add the vDisk(s) to the virtual disk pool.

**Releasing virtual disk locks**

May 16, 2019

Multiple target devices and Citrix Provisioning servers access a single virtual disk image file, which makes it necessary to control access to prevent corruption of the image. When a user accidentally assigns a private image to multiple target devices, and then tries to boot those target devices, a corrupt image results. Therefore, the image becomes locked appropriately for a given configuration. The locked virtual disk icon appears with a small **lock** on it.

Under certain circumstances these locks are not be released properly. A lock on a virtual disk image is not released properly when a target device machine is booted from a virtual disk, and then fails. If the same target device boots again, the same lock is used and no problem occurs. However, if an administrator tries to mount the drive on the provisioning server after the target device has failed, the server fails to mount that virtual disk. The server fails to mount the virtual disk because a lock is still held by the failed target device. The administrator can release these locks.

**Note:**

Ensure that the virtual disk is not in use before removing a lock. Removing a lock for a virtual disk, which is in use, might corrupt the image.
To release virtual disk locks

1. In the Citrix Provisioning console, right-click on the virtual disk for which you want to release locks, and then select the Manage Locks option. The Manage VDisk Locks dialog appears.
2. If a virtual disk has a target device lock on it, that target device name appears in the dialog’s list. Select one or more target devices from the list, then click Remove lock. You can also choose Select All to remove all target device locks on the selected virtual disk.
3. Click Close to close the dialog.

Copying and pasting virtual disk properties

May 16, 2019

Use the Copy and Paste options to copy properties of one virtual disk to one or more vDisks in your network.

To copy virtual disk properties to one or more vDisks

1. In the Citrix Provisioning console, right-click on the virtual disk that has the properties settings that you want to share with other vDisks. Select Copy vDisk Properties. The Copy vDisk Properties dialog appears.
2. Select the check boxes next to the properties that you want to copy to other vDisks, then click Copy.
3. In the details panel, highlight the vDisks that you want to paste properties settings to, then click Paste from the right-click menu.

Adding existing vDisks to a virtual disk pool or store

May 16, 2019

If virtual disks exist in a store, and are used by target devices in your site, you can add them to the site’s virtual disk pool. In the Citrix Provisioning console, select Add existing vDisks by right-clicking the menu option. This option is available from the vDisk Pool folder and from a store folder.

To add existing vDisks to a site

1. Verify the following:
• Other servers have access to the shared folder where the store is located.
• The new server is associated with that store.

2. In the console tree, right-click on the **vDisk Pool** in the site where you want to add vDisks. You can alternately right-click on the store where those vDisks exist. Select the **Add existing vDisk** menu option. The **Add Existing vDisks** dialog appears.

3. If you accessed this dialog from the site’s virtual disk pool, select the store to search from the menu. If you accessed this dialog from the store, select the site where vDisks are added using the menu.

4. In the **Select the server to use when searching for new vDisks** menu, select the Citrix Provisioning server performing the search. Click **Search**. Any new vDisks that do not exist in the database display in the text box.

5. Check the box next to each virtual disk that you want to add. Alternately click **Select All** to add all vDisks in the list, then click **Add**.

### Backing up a virtual disk

May 16, 2019

The Citrix Provisioning server treats a virtual disk image file like a regular file, but the target device treats it as a hard drive. The procedure for backing up a virtual disk image file is the same as backing up any other file on your server. If a virtual disk image file becomes corrupt, restoring it requires replacing the corrupted file with a previous, functional version.

**Note:**

Do not back up a virtual disk while its being used or while it is locked. Citrix recommends backing up these disks using your normal provisioning server backup routine.

### Viewing virtual disk usage

May 16, 2019

**To view target devices that are connected to a specific virtual disk**

1. Right-click a virtual disk in the Citrix Provisioning console, then select the **Show usage** menu option. The **Show vDisk Usage** dialog appears.
2. Select one or more target devices in the list to perform any of the following target device connection tasks:
   - Shut Down – shuts down the target device.
   - Reboot – reboots the target device.
   - Send Message – opens the Edit Message dialog to allow you to type, and then send a message to target devices.

To view all target devices served by a Citrix Provisioning server

1. Right-click on a Citrix Provisioning server in the console, then select the Show Connected devices menu option. The Connected Target Devices dialog appears.
2. Select one or more target devices in the list to perform any of the following target device connection tasks:
   - Shut Down – shuts down the target device.
   - Reboot – reboots the target device.
   - Send Message – opens the Edit Message dialog to allow you to type, and then send a message to target devices.

Deleting cache on a difference disk

May 16, 2019

The Delete Cache from Selected Devices context menu option manually deletes the cache on a difference disk. It is only available if the virtual disk cache mode is set to Server Persistent Cache.

**Note:**
The write cache on a difference disk is not automatically deleted if that file becomes invalid. Citrix recommends manually deleting files marked as invalid.

To delete a cache on a difference disk

1. In the Citrix Provisioning console, right-click on the virtual disk that is associated with difference disk files you want to delete. Select the Delete Cache from Selected Devices menu option.
The **Delete Cache for Devices** dialog box appears.

2. Check each target device cache you want to delete, or click **Select all** to delete all cache files associated with this virtual disk.

3. Click **Delete** to delete the cache files from the server.

**Assigning virtual disks and versions to target devices**

May 16, 2019

A virtual disk version can be assigned and unassigned to a target device.

**Accessing a version of the virtual disk**

Numerous differencing disk versions can exist for a virtual disk. Device access to a particular version, or the ability to make updates to that version, depends on that version’s **access mode** setting and the **device type**. The sections that follow describe the different version access modes and device types and their relationship to each other.

A version’s access mode is managed on the virtual disk **Versioning** dialog. New versions of a virtual disk are promoted from **Maintenance** to **Test** and then into **Production**. Access mode options include:
• **Maintenance** – new read/write difference disk version that is only available to the first Maintenance device that selects to boots from it to make updates.

• **Test** – read-only version used for test purposes and only available to Test or Maintenance devices.

• **Pending** – read-only version and not yet available for use by production devices. This field indicates that the scheduled release date and time have not been reached. Or, the version is not yet available to all servers in the site. If the **Boot production devices** option is set to **Newest released**, the default changes. After the release date and time is reached and all servers are able to access this version, access changes to **default**. If the access display is blank, this version is considered released to production. However, it is not the version currently selected as the version from which production devices boot.

• **Default** – read-only version that is bootable by all device types. The latest released production version is marked with a green checkmark if the **Boot production device from version** is set to **Newest released**. The status is set to default.

• **Override** – read-only version that is bootable by all device types. If a specific version is selected from the **Boot production devices** from the version menu, that version is marked with a green checkmark. Access changes to **Override**.

• **Newest released** – read-only version that is bootable by all devices. If a specific version is selected from the **Boot production devices** from the version menu, that version is marked with a green checkmark. Access changes to **Override**.

• **Merging** – a merge is occurring to this new version. This version is unavailable to all device types until the merge completes. After the merge completes, the status of the new version depends on the **Access mode** selected on the **Mode to set the vDisk to after automatic merge** menu. Modes are production, maintenance, or test. This **Farm Properties** setting is available on the **vDisk Versions** tab.

### Device types

The device type is selected on the **Target Device Properties General** tab, unless it is an update device, which is created automatically along with the managed virtual disk.

Device types include:

- **maintenance devices**

  Maintenance devices can access any available version of a virtual disk. A maintenance device's primary role is to manually update a virtual disk. To manually update a disk, you request a new version from the virtual disk **Versions** dialog. This process creates a differencing disk and places that newly created version in **Maintenance Access** mode. While in maintenance mode,
this version of the virtual disk is solely accessed by a single maintenance device, which is the first maintenance device that accesses it. Using that device, the virtual disk is booted and any updates that are made are captured in the new differencing disk version. After updates are complete, the maintenance version can be promoted to Test mode or directly to production mode.

Note:
In Maintenance Mode, a new version can also be created by merging existing versions into a new version or new base disk image.

- **test devices**

While in Test mode, the virtual disk version can only be streamed to test or maintenance devices to which it is assigned. Streaming in this mode allows the new version to be tested before being released into the production environment. And it permits production devices to continue to stream from the previous version without interruption. If issues are found, this version can be reverted into maintenance mode.

If you are testing a device that uses a Personal vDisk, use the assigned Personal vDisk test device to test virtual disk updates.

- **production devices**

After you successfully test the new version, it can be promoted to production mode and made available to product, test, and maintenance devices to which it is assigned. If issues are found, this version can be reverted into either test or maintenance mode. This process only occurs after booted devices accessing this version are shut down.

If a device is assigned a virtual disk, after the updated disk is tested you can change the device to be a virtual disk production device. This configuration allows you to continue testing for compatibility within your production environment.

  - **update devices**

Update devices are used to update a managed virtual disk, which is created automatically when running the **Managed vDisk Setup Wizard**. Only one updated device exists for each managed virtual disk, and that disk and that updated device are given the same name. For more information on managed virtual disks, see virtual disk Update Management.

**Unassigning a virtual disk from target device**

To unassign a virtual disk from a target device:

1. Select the virtual disk in the Citrix Provisioning console, then right-click and select the **Unassign from Selected Devices** or **Unassign from All Site Devices** menu option.
2. If unassigning from select devices, in the **Unassign from Devices** dialog, select the devices to unassign to this virtual disk, then click **Unassign**. If unassigning from all devices in a site, click **Yes** on the confirmation dialog that appears.

3. After the target devices are successfully unassigned, close any open dialogs.

**Note:**
The **Unassign from All site Devices** option only unassigns vDisks that are not personal vDisks. When a Personal vDisk is deleted, the virtual disk's **Update Device** is also deleted.

**Virtual disk versioning dialog**

Virtual disk versioning is managed from the **vDisk Versions** dialog. To open the dialog, right-click on a virtual disk in the console, then select the **Versions...** menu option. The following provides a general description of the **vDisk Versions** dialog:

- **Booting devices from version**
  
  From the menu box, select the version to use when booting target devices in production. The default is the newest version.

- **Version and status**
  
  This column lists versions and the status of each version:

  - the wrench icon indicates that this version’s access mode is set to **Maintenance** mode. Only a single maintenance device can boot.
  - the magnifying glass icon indicates that this version's access mode is set to **Test**. Only a test device can boot.
  - the clock icon indicates that this version’s access mode is set to **Pending**. A version that is Pending has been promoted to production but the release date and time have not yet been reached.
  - the green checkmark icon indicates that this version is the current production version based on settings selected on the **Boot production devices from version** menu. All device types can boot from virtual disk version that is in production.
  - the red X icon indicates that this version is obsolete, no devices are currently booted from it, and that this version can be deleted because a merged base was created, which is more current.

- **Created**
  
  Provides the date and the time that this version was created. Date format is YYYY/MM/DD and time format is HH:MM
• **Released**

Provides the date and time that this version is scheduled for release to production. The date format is YYYY/MM/DD and time format is HH:MM

• **Devices**

The number of target devices streaming sessions for a given version.

• **Access**

Indicates target device access availability for a given version.

Maintenance read/write version that is available to the first maintenance device that selects to boots from it.

Test read-only version used for test purposes and only available to test or maintenance devices.

Pending read-only and not yet available for use because the scheduled release date and time have not been reached.

Default read-only version that is bootable by all devices. If the **Boot production devices from version** is set to **Newest released**, the latest released production version is marked with a green checkmark. Access is set the **Default**.

Override read-only version that is bootable by all devices. If a specific version is selected from the **Boot production devices from version** menu, the access changes to **Override**.

Merging a merge is occurring to this new version. This version is unavailable until the merge completes. After the merge completes, the status of the new version depends on the access mode selected on the Mode to set the virtual disk to after automatic merge menu (Production, Maintenance, or Test). The default **Farm Properties** setting is available on the vDisk Versions tab. A wrench icon appears for the merging version.

Blank, indicates that this version was released to production.

• **Type**

Identifies how the virtual disk was created. The options include:

- Manual created using Maintenance mode.
- Automatic created automatically using an automated update.
- Merge Created by a partial merge operation.
- Merge Base Created by a base merge operation (no parent needed).
- Base The original base image.
Citrix Provisioning 1909

- **New**
  Creates a maintenance version.

- **Promote**
  Opens a dialog that prompts to promote this version to Test or Production. If Production is selected a release date and time can be set or the default (now) can be accepted.

- **Revert**
  Reverting from Test version: if no maintenance access version exists, revert moves latest test version into Maintenance.
  Reverting from Production: any booted device is shut down before reverting. Clicking **Revert** opens a dialog that allows the user to select to revert to test or maintenance.

- **Delete**
  Clicking **Delete** opens a delete confirmation dialog. Click **OK** to delete the selected version. Delete is only available if the latest version or obsolete version doesn’t have target devices currently booted from it.

- **Replication**
  Selecting a version, then clicking **Replication** opens the **Disk Versioning Replication Status** dialog. This dialog displays the replication status of this version on each server:
    - Blue check next to the server name indicates that the version has been replicated on the server.
    - Orange triangle next to the server name indicates that the version has not yet been replicated or there is an issue. Placing the cursor over the triangle displays the related error message.
  To view the replication status of all versions of this virtual disk on each server, right-click on the virtual disk in the console, then select **Replication Status** from the context menu.

- **Properties**
  Clicking the **Properties** button opens the **vDisk Version Properties** dialog, which allows you to enter a description related to this version. It also displays availability of a selected version if that version is set for release to production in the future. Or, if no device has booted from that version.

- **Text**
  The text box provides a description of the currently selected version.
Updating virtual disks

October 4, 2019

It is often necessary to update an existing virtual disk so that the image contains the most current software and patches. Each time the virtual disk is updated, a new version of that virtual disk is created. This file is seen as a Hyper-V Virtual Hard Drive, with the extension .vhdx. This new version is used to capture the changes without updating the base virtual disk image.

Updating a virtual disk involves the following:

- Create a version of the virtual disk, manually or automatically.
- Boot the newly created version from a device (maintenance device or update device), make and save any changes to the virtual disk, then shut down the device.
- Promote the new version to production.

The following illustrates the general promotion of a virtual disk update:
The availability of the updated version depends on the current promotion of that version, for example, maintenance, test, or production. It also depends on the type of device attempting to access it, for example, maintenance device, update device, test device, or production device.

If you are updating a device that uses a Personal vDisk image, ensure compatibility in your production environment using this procedure:

**Note:** If you are updating images for devices that use a Personal vDisk, it must be done on a virtual machine without a Personal vDisk. Otherwise, updates are saved to the Personal vDisk image rather than the virtual machine image.

1. Create a maintenance version of the virtual disk.
2. Make any necessary updates to the maintenance version.
3. Promote the new maintenance version to test.
4. Boot the Personal vDisk test device, and verify updates.
5. Promote the test version to production.

**Update scenarios**

The following virtual disk update scenarios are supported:

- **Manual Update** – Manually update a virtual disk by creating a version; use a Maintenance device to capture updates to that version. On the **vDisk Versions** dialog, initiate a manual update by clicking **New**. The **Access** column on the **vDisk Versions** dialog indicates that the newly created version is in maintenance. A single maintenance device updates this version while in maintenance mode. Multiple maintenance devices can be assigned to a virtual disk. However, only one device can boot and access that version of the virtual disk at any given time. During that time that maintenance device has exclusive read/write access.

- **Automated Update** – Creating automated updates saves administration time and physical resources. Updates are initiated on-demand or from a schedule and are configured using virtual disk Update Management. If you are updating automatically, the **Access** column on the **vDisk Versions** dialog indicates that the newly created version is in maintenance. The device to which it is assigned is updated while in maintenance mode, where only one update device exists per virtual disk.

  **Note:**

  Virtual disk Update Management is intended for use with standard image mode vDisks only. Private image mode vDisks can be updated using normal software distribution tool procedures. Registering a virtual disk in private image mode for update management, or switching a virtual disk that is already registered, generates errors.

- **Merge** – Merging VHDX differencing disk files can save disk space and increase performance, depending on the merge option selected. A merge update is initiated manually by selecting the
**Merge** button on the virtual disk Versions dialog, or automatically when the maximum virtual disk versions count is reached.

**VHDX chain of differencing disks**

Versioning simplifies virtual disk update and management tasks, providing a more flexible and robust approach to managing vDisks.

A virtual disk consists of a VHDX base image file, any associated side-car files, and if applicable, a chain of referenced VHDX differencing disks. Differencing disks are created to capture the changes made to the base disk image, leaving the original base disk unchanged. Each differencing disk that is associated with a base disk represents a different version.

The following sections discuss the file naming convention used and the relationship between a base disk and all versions referencing it.

**VHDX chain**

**Note:**

Virtual disk versions are created and managed using the virtual disk Versions dialog and by performing common virtual disk versioning tasks.

Each time a virtual disk is put into maintenance mode a new version of the VHDX differencing disk is created. The file name is numerically incremented. The following table illustrates these chain sequences:

<table>
<thead>
<tr>
<th>VHDX file name</th>
<th>Properties file name</th>
<th>Lock File file name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Image</td>
<td>win7dev.vhdx</td>
<td>win7dev.pvp</td>
</tr>
<tr>
<td>Version 1</td>
<td>win7dev.1.avhdx</td>
<td>win7dev.1.pvp</td>
</tr>
<tr>
<td>Version 2</td>
<td>win7dev.2.avhdx</td>
<td>win7dev.2.pvp</td>
</tr>
<tr>
<td>Version 3</td>
<td>win7dev.3.avhdx</td>
<td>win7dev.3.pvp</td>
</tr>
<tr>
<td>Version 4</td>
<td>win7dev.4.vhdx</td>
<td>win7dev.4.pvp</td>
</tr>
<tr>
<td>Version N</td>
<td>win7dev.N.vhdx</td>
<td>win7dev.N.pvp</td>
</tr>
</tbody>
</table>

For Version 4 and Version N merged base VHDX and AVHDX files are combined and use the VHDX extension.
Manually updating a virtual disk image

Use the virtual disk Versions dialog to create a version of the virtual disk's base image.

**Note:**

To automate an update process, configure for virtual disk update management. See [Automating virtual disk Updates](#).

This procedure requires that:

- A maintenance device has been assigned to the virtual disk being updated.
- No version of this virtual disk is under maintenance.

**Note:**

Updating images for devices that use a Personal vDisk, must be done on a virtual machine that does not have a Personal vDisk attached. Otherwise, updates are saved to the Personal vDisk image rather than the virtual machine image.

Create a version

1. In the Citrix Provisioning console, right-click on a virtual disk to version within a device collection or virtual disk pool, then select **Versions** from the context menu. The **vDisk Versions** dialog appears.

   **Note:**

   Verify that the virtual disk is not in private image mode.

2. Click **New**. The new version displays in the dialog. Access set to **maintenance** and the update type method set to **manual**.

3. Boot the virtual disk from a maintenance device, install or remove applications, add patches, and complete any other necessary updates, then shut down the maintenance device. Optionally, test that changes were made successfully.

   **Note:**

   When booting a test or maintenance device, use the boot menu to select from the virtual disk, or version of that virtual disk, from which to boot. This process does not work if the device is a Personal vDisk test device.

4. Select the virtual disk, then right-click. Select the **Promote...** menu option from the context menu that appears. For more details on promoting versions see [Promoting Updated Versions](#).

5. Select to promote this maintenance version into test or directly into production. If **Production** is selected, set the availability of this version in production to be either immediate or scheduled.
6. Click OK to promote this version and end maintenance.

**Merging VHDX differencing disks**

Merging VHDX differencing disk files can save disk space and increase performance, depending on the merge method selected. Once a virtual disk reaches five versions, Citrix recommends merging the versions either to a new base image or to a consolidated differencing disk.

Merge methods include:

- Merging to a new base image
- Merging to a consolidated differencing disk

**Note:**

A merged virtual disk only occurs when a maintenance version is not defined, or when it is in private image mode. A merged virtual disk starts from the top of the chain down to the base disk image. A starting disk cannot be specified for the merged virtual disk.

**Merging to a new base image**

Fully merging to a new base image combines a chain of differencing disks and base image disks into a new single base disk, which represents the next version in the chain with the file name extension VHDX. This method allows for the fastest disk access to the base image. Citrix recommends this process when performance is more important than disk space. Consider that a new base disk is created for every merge performed.

**Tip:**

After merging the base operation on a virtual disk utilizing the VHDX file format, the merged base VHDX file is smaller than the original base VHDX file. This behavior occurs when files are deleted in a particular virtual disk version. These files are no longer available in the merged base VHDX. For more information, see the Citrix Knowledge Center.

**Merging to a consolidated differencing disk**

A partial merge combines a chain of VHDX differencing disks up to, but not including, the base disk into a new differencing disk. The new differencing disk has the same parent base disk image. It is given the extension avhdx. This method consumes less disk space than the full merge and the merge process is quicker than performing a full merge.

Automatically consolidate differencing disks in the Farm Properties dialog's virtual disk Version tab. Select a maximum virtual disk number, when that number is reached, a merge is automatically per-
formed. The availability of that virtual disk depends on the mode selected on the tab, production, maintenance, or test.

Note:
Citrix recommends consolidating a merged differencing disk when storage is limited or when the bandwidth between remote locations is limited. These scenarios make copying large images impractical.

Merging differencing disks

1. Right-click on a virtual disk in the Citrix Provisioning console, then select the Versions menu option. The virtual disk Versions dialog appears.
2. Click the Merge button. The Merge dialog appears.
3. Select to perform Merged Updates or a Merged Base merge.
   • To merge all differencing disks to a single differencing disk (not to the base disk image), select the Merged Updates option.
   • To merge all differencing disks into a new base disk, select the Merged Base option.
4. Select the access mode, production, maintenance, or test, for this version after the merge completes. If an access mode is not selected, the virtual disk mode defaults to automatic range, specified in the Farm Properties virtual disk Version tab.
5. Click OK to begin the merge process.

The time it takes to complete the merge process varies based on the merge method selected and the number of differencing disks to merge. After the merge successfully completes, the new version displays in the virtual disk Versions dialog. If you selected a full merge, the Type column displays either Merge Base, or Merge if a partial merge was selected.

Promoting updated versions

An updated version of the virtual disk is not available to production devices until it is promoted to production. The update promotion stages include:

   • maintenance
   • test
   • production

Each time a new version is created, the Access setting is automatically set to Maintenance, allowing maintenance devices to make updates. After you finish update, this version can be promoted from Maintenance to Test for read-only. This permits testing by test devices, or promotion directly to production, for use by all target devices.
After you complete an update using the manual method, the new version can be promoted to test or production from the virtual disk Version dialog’s Promote button. If you selected production, a release date and time can be set, or accept the default, Immediate.

After you complete an update using the automated update method, the new version is promoted according to the Post Update setting. After completing the automatic update, promote the version using the vDisk Version dialog’s Promote button.

If issues exist in the new version, revert from test to maintenance, if no active sessions exist. You can alternately revert from production to either test or maintenance. Shut down any booted device before reverting to another version.

In order for production devices to access the new version after it is promoted to production, the following also applies:

- Access setting must be either Default or Override.
- If the update was scheduled for release, the date and time must be reached.
- The updated version must be available to all servers in the site.
- Boot production devices from a version set to Newest released on the vDisk Versions dialog.

Note:

When the Access field is blank, this version is considered released to production, however, it is not the version from which devices boot.

Updating virtual disks on target devices

This article describes how to change a virtual disk on multiple target devices without having to manually reconfigure them. It provides some general information about the process, then sets out a step-by-step procedure.

Setting virtual disk class and type properties

For an automatic update to take place, the class of the target device and virtual disk must match. For a newer virtual disk to replace an older virtual disk within a target device, the virtual disk class and type of both vDisks must match. Multiple, duplicate virtual disk instances can exist within your implementation. vDisks can be assigned to one or more target devices. For example, for the Citrix Provisioning server, Least Busy and First Available boot behaviors. Further qualify the old virtual disk that replaced by the new virtual disk.

Tip:

Never assign more than one virtual disk with the same type from the same provisioning server to the same target device. This process applies to environments using the Automatic Disk Image
Update feature.

Scheduling virtual disk updates

Use the Apply vDisk updates to schedule updates. These updates are applied when detected by the server. You can alternately select Schedule the next vDisk update on the Auto Update tab of the virtual disk. If you select Schedule the next vDisk update, you must specify the current date or a later date. Failing to do so prevents an update to the virtual disk.

Timed update of vDisks

You can set a timer to update vDisks. The virtual disk are assigned to all the devices with a matching class at a specified time, for example when devices are less active.

To set a timer, create a Windows timer on one of the servers from each site. This process calls the PowerShell Mcli-Run ApplyAutoUpdate command or the Mcli Run ApplyAutoUpdate command. The command scans the site and updates all eligible virtual disks. The timer executes every day. These updates are automatically made whenever you add new disk versions.

Automatically adding a replacement virtual disk

To add a replacement virtual disk to a site automatically, place it in the store directory of the virtual disk it replaces. When the update process is done, each store for the site is scanned for vDisks that are not defined in the site. A virtual disk is automatically added to a site and assigned to a target device with a matching class:

- if a virtual disk is found with the same Class and Type as an existing virtual disk in the store directory.
- if a virtual disk is labeled as major or minor, and the build number is higher than the existing virtual disk.

The replacement virtual disk must include all versions since and including the last merged base, or if no merged base exists, the base. All the VHD, AVHDX, and the PVP files for the included versions must be in the store directory.

If the replacement virtual disk has multiple versions, the manifest (XML) file must be included with the virtual disk. To create the manifest file, perform a virtual disk Export. To reduce the number of delivered files, delete obsolete versions in the vDisk Versions dialog before performing exporting the virtual disk.
Automatically update a virtual disk

1. For the original virtual disk, select the Auto Update tab, then set the following virtual disk properties:
   a. Enable automatic updates.
   b. Run the ApplyAutoUpdate to determine if the update is immediately applied, or on a scheduled date.
   c. Enter a class and type for the virtual disk.
   d. Enter a major, minor, and build number for the virtual disk.

   Note:
   The Serial Number field is set to a random Globally Unique Identifier (GUID) when the virtual disk is created. It is for information only and you can edit it. It is not used for processing the automatic update.

2. For target devices using the updated virtual disk, select the General tab. In Target Devices Properties set the Class equal to the value of the original virtual disk.

3. Ensure that the replacement virtual disk is in the same store as the original virtual disk.

4. For the replacement disk, select the Auto Update tab, set the following virtual disk properties:
   a. Only enable automatic updates if this virtual disk replaces another virtual disk.
   b. If automatic updates are enabled, determine if the update is immediately applied. You can alternately schedule when to check for updates by running ApplyAutoUpdate.
   c. Enter the same class and type that you entered for the original virtual disk.
   d. Enter a major, minor, and build number for the virtual disk that is higher than the original virtual disk.

5. If the virtual disk update is required for other farm sites, deliver the replacement virtual disk to them. Follow the information described in step 4. This updated virtual disk is required in the same store as the original virtual disk of the other farm site. See ‘Automatically adding a replacement virtual disk’ earlier in this article.

6. Configure the update check. Updated vDisks contain a higher major, minor, and build number that are eligible using one of the following ways:
   • Right-click on the virtual disk Pool, select the Check for Automatic Updates menu option, then click OK on the confirmation dialog.
   Or
   • Set a timer as described earlier in this article.
Automating virtual disk updates

Virtual disk update management is intended for use with Standard Image Mode vDisks only. Private image mode vDisks are updated using normal software distribution tool procedures. Attempting to register a private image mode virtual disk for virtual disk update management, or switching a virtual disk that is already registered, causes errors. In the console, the vDisk Update Management feature is used to configure the automation of virtual disk updates using virtual machines (VMs). Automated virtual disk updates occur on a scheduled basis, or at any time that the administrator invokes the update directly from the console. This feature supports updates detected and delivered from WSUS and SCCM Electronic Software Delivery (ESD) servers.

When the Site node is expanded in the console tree, the virtual disk Update Management feature appears. When expanded, the virtual disk Update Management feature includes the following managed components:

- Hosts
- vDisks
- Tasks

Configuring a site for virtual disk Update Management requires the following:

1. Designate a provisioning server within the site to process updates. See Enabling Automatic virtual disk Updates.
2. Configuring a virtual host pool for automated virtual disk updates. See Using the Virtual Host Connection Wizard. **Note:** Supported hypervisor types include Citrix Hypervisor, Microsoft SCVMM/Hyper-V, and VMware vSphere/ESX.
3. Create and configure an ESD VM that used to update the virtual disk. See Creating and Configuring ESD Update VMs.
4. Configuring vDisks for automated updates. See the Using the Managed virtual disk Setup Wizard.
5. Creating and managing update tasks. See Using the Update Task Wizard. **Note:** The user that configures virtual disk update management tasks must have permissions to create, modify, and delete Active Directory accounts.
6. Run the update task by right-clicking on the task object in the console, and then selecting the Run update now menu option. The update VM boots, install updates, and reboot as necessary. After the update task successfully completes, the virtual machine is automatically shut down. The update status can be checked from the console tree under **vDisk Update Management>vDisks>(vDisk name) Completed Update Status.** The status can also be checked using the event viewer or in WSUS.

After configuring the site to use virtual disk update management, managed vDisks are updated using the following methods:

- Scheduled – the image update service automatically updates a virtual disk, on a scheduled basis as defined in the Update Task.
• User Invoked – select a managed virtual disk from the Console’s **Run update now** menu option. This option requires you to manually start, then stop the Update Device after the update is complete.

Consider the following when automating virtual disk updates:

• The virtual disk update process starts either automatically (scheduled), or when an administrator right-clicks on a managed virtual disk, then selects the **Run update now** menu option.
• Citrix Provisioning creates a version (VHDX) and places that version in maintenance mode (read/write).
• The virtual machine boots the assigned virtual disk. If **Scheduled update** is configured, virtual disk update management performs the boot automatically. For a **User invoked update**, the administrator invokes the update.
• All updates are automatically made and captured in the new version of the VHDX file.
• After you update the virtual disk, the virtual machine is shut down automatically.
• The virtual disk is promoted from maintenance to either test or production. The availability of the new virtual disk version depends on the access mode that was selected when the **Update Task Wizard** was run. Or, when the mode is selected on the **Update Task Properties’ Finish** tab (maintenance, test, or production). After this version is made available in production, target devices will be able to access it the next time they boot that virtual disk.

**Enabling automatic virtual disk updates**

To enable automatic virtual disk updates:

1. Right-click on the Site in the console, then select the **Properties** menu option. The **Site Properties** dialog appears.
2. On the **vDisk Update** tab, check the box next to **Enable automatic vDisk updates on this site**.
3. Select the server to run virtual disk updates for this site, then click **OK**.

Managed vDisks can now be automatically updated on this site. Next, virtual host connections must be configured to allow for automatic updates to be made. See **Configuring Virtual Host Connections for Automated virtual disk Updates**.

**Configuring virtual host connections for Automated virtual disk updates**

When you use virtual disk update management, a designated hypervisor server is selected from within a virtual pool that is then used to communicate with Citrix Provisioning. Create the designated hypervisor by running the Virtual Host Connection Wizard. If you are running a vCenter server on alternate ports, the following registry modifications must be made to connect to it from Citrix Provisioning:

• Create a registry key named **PlatformEsx** under `HKLM\Software\Citrix\Citrix Provisioning`
- Create a string value in the PlatformEsx key named ServerConnectionString and set it to http://%7B0%7D:PORT#/sdk. If you are using port 300, ServerConnectionString= http://%7B0%7D:300/sdk.

To configure virtual host connections:

1. Under the vDisk Update Management node in the Citrix Provisioning console, right-click on Hosts, then select the Add host… option. The Virtual Host Connection Wizard appears.
2. Click Next to begin. The Hypervisor page appears.
3. Click the radio button next to the type of hypervisor used by this pool, then click Next. Options include Citrix XenServer Microsoft, SCVMM/Hyper-V, or vSphere/ESX. The Name/Description page appears.
4. Enter the name, and optionally a description, for the Virtual Host Connection then click Next.
5. Enter the host name or the IP address of the server to contact. If an ESX hypervisor was selected, optionally specify the data center to use when connecting to the host. Note: It can take several minutes before a hostname/IP address can be reentered, if that hostname/IP was previously entered and then deleted.
6. Click Next. The Credentials page appears.
7. Enter the appropriate credentials required to connect to this host, then click Next. Specify the following: User name – the account name with appropriate permissions to access the virtual host pool server. Password – password used with this account name. The password must be a maximum of 32 characters. The Confirmation page appears.
8. Review the settings to ensure accuracy, then click Finish. Virtual Host Pool properties can be viewed or modified on the Virtual Host Connection Properties dialog.

General tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of virtual host connection that was selected when the Virtual Host Connection Wizard was run. This field cannot be modified.</td>
</tr>
<tr>
<td>Name</td>
<td>The name to use when referencing this virtual host connection by Citrix Provisioning.</td>
</tr>
<tr>
<td>Description</td>
<td>A brief description of this virtual host connection.</td>
</tr>
</tbody>
</table>
Field Description

Host The hostname or IP address of the virtual host connection server used by Citrix Provisioning. To use a different port for the ESX server connection, in the server address field, enter the full connection string and include the correct port number. The format for the connection string is http://server_name:port/sdk. **Note:** If you are running a vCenter server on alternate ports, the following registry modifications must be made to connect to it from Citrix Provisioning: Create a new key HKLM\SOFTWARE\Citrix\CitrixProvisioning\PlatformEsx. Or, create a string in the **PlatformEsx** key named ServerConnectionString and set it to http://%7B0%7D:PORT#/sdk. If you are using port 300, ServerConnectionString= http://%7B0%7D:300/sdk.

Data center Optional. If an ESX hypervisor was selected, optionally specify the data center to use when connecting to the host.

**Credentials tab**

Field Description

Update limit The account user name required to connect to the virtual host server.

Password The account password that is associated with the user name. The password must be a maximum of 32 characters.

Verify Connection Button Click this button to verify that the user name and password entered are valid and allow communications to the virtual host pool server.
Advanced tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update limit</td>
<td>Controls the number of virtual machines that can concurrently process updates. Any additional updates are queued and start as virtual machines complete processing.</td>
</tr>
<tr>
<td>Update timeout</td>
<td>The maximum amount of time allowed to perform an update to an image. If the update has not completed before the timeout period, the update is canceled.</td>
</tr>
<tr>
<td>Shutdown timeout</td>
<td>The maximum amount of time to wait for the virtual machine to shut down. If the virtual machine has not shut-down before the time-out period, the virtual machine forces a shutdown by the server.</td>
</tr>
<tr>
<td>Port</td>
<td>Sets the IP port number. This field is not available with VMware vSphere/ESX.</td>
</tr>
</tbody>
</table>

Retiring or deleting virtual disks

May 16, 2019

A virtual disk that is no longer needed can be retired by deleting it. All VHDX differencing disk files, properties files, lock files, and the difference cache are also deleted.

Note:

You cannot delete a virtual disk if one or more target devices are currently assigned to it. Unassign all target devices from the virtual disk, before attempting to delete it. When deleting a disk, a confirmation dialog appears indicating that you are removing the virtual disk reference files in addition to the assigned device.

To delete a virtual disk

1. In the Citrix Provisioning console, expand vDisk Pool in the tree, then highlight the virtual disk that you want to delete in the details pane.
2. Right-click on the virtual disk, then select **Delete**. The Delete vDisks dialog appears.

3. To delete the virtual disk from the hard drive, select the check box for deleting the virtual disk from the hard drive option. Or, do not select the check box to delete the virtual disk from the store and database. The disk image file is permanently deleted unless a backup copy is made before deleting it from the store.

4. Click **Yes**. The virtual disk is deleted.

**Printers**

May 22, 2019

A Citrix Provisioning server provides a printer management feature that allows you to manage which printers target devices access on a virtual disk. Printers are managed from the **Target Device Properties** dialog.

Do not enable this feature if you use Active Directory to manage printers. If you use an existing printer management tool, disable this feature to avoid printer setting conflicts.

Printers can only be added to the top-level differencing disk version while in maintenance mode or if the disk is in private image mode. If a device boots from a previous version, the printer configuration does not match.

There are two types of printers that can appear in the Citrix Provisioning console window:

- network printers
- local printers

Before a target device can access a printer, the following tasks must be completed in the order that follows:

- Installing printers on the virtual disk
- Enabling printers on the virtual disk
- Enabling the printer management feature

**Installing printers on a virtual disk**

Printers must be installed on the virtual disk image before the printers are available to target devices booting from that disk. They can only be added to the top-level differencing disk version while it is in maintenance mode or if it is a private image mode. If a device boots from a previous version, the printer configuration does not match.
To install printers on the virtual disk

1. Change the virtual disk image mode to **Private Image** mode.
2. Install the required printers on the target device that is using the virtual disk.
3. Perform a clean shut-down of the target device using the virtual disk.
4. If users share this virtual disk, change the virtual disk image mode back to **Shared Image** mode.
5. Verify that the printers display in the console:
   a) Right-click on the target device, select the **Properties** menu option.
   b) Select the **vDisks** tab, then click the printers button. Printers associated with that virtual disk appear in the list of available printers.

After successfully installing printers, the next step is to enable printers for target devices that access this virtual disk.

Enable or disable printers on a virtual disk

By default, printers are not enabled on the virtual disk. Enable or disable printers from the **Target Device Properties vDisk** tab. On the **Printers** dialog, enable the check box next to each printer to enable or disable it. After you assign printers to target devices, enable the printer management feature on the virtual disk.

Until printer management is enabled, all printers that are installed on the target device are available to that target device. By enabling printer management, you can select printers or remove printers from individual target devices.

**Note:**
The printer management feature is only recommended if you are not using Active Directory to manage printer groups.

After a target device boots, printer information, which is included in a virtual disk image, becomes available to target devices. Printer management is initially disabled until all printer-to-target device assignments are completed for the virtual disk. Disabling individual printers prohibits target devices from accessing those printers.

**Tip:**
Disabling printers does not remove the printer information from the virtual disk. Changes to the target devices printer assignments do not occur until the target device reboots.

Reasons to disable printer management include:

- If you are using a different printer system that installs the valid printers on each target device. Then subsequent software installations delete them or cause setting conflicts.
- Printers that are included on the virtual disk are not accessible to all users.
The system must be configured before being deployed. Until the printer management feature is enabled, changes can be made for different target devices as needed.

All printers installed on a virtual disk appear in the Details panel when the Printers group folder is expanded for that virtual disk.

If a disk is a high availability virtual disk (has a duplicate with same virtual disk name), changes to that printer (if it is enabled or disabled for a target device) are automatically made to the duplicate virtual disk.

Enablement methods

Using the console, you can manage which target devices use which printers. There are several methods for managing target device printer assignments. Choose from the following methods:

- Enabling printers for target devices using the Printer settings option. Use this method to enable or disable a single printer to multiple target devices accessing a virtual disk.
- Enabling printers for target devices using the Printers group folder. Use this method to select printer settings for a single target device. Printer settings include enable, disable, and default.
- Enabling printers using Copy and Paste. Use this method to share the printer settings of one target device to one or more target devices selected in the Details panel. Printer settings include enable, disable, and default.
- Enabling printers using an existing target device as a template. Use this method to automatically set printer settings when a target device is added to the network.

Note:

You can choose to limit the number of printers for particular target devices or select different default printers for particular target devices. The settings that are selected are saved to the target device's personality information. If the limit for this field is reached, a message indicates that some of the settings are not saved and offers suggestions for decreasing the size.

Methods for enabling printers on a virtual disk

Use the information in this section to enable a printer on a virtual disk.

Enabling printers for target devices using the printer settings option

Use this method to assign a single printer to multiple target devices. This method is useful when managing the printer-to-all target devices relationship.

1. In the console, under servers, click the Printers group folder. All printers associated with that group appear in the Details panel.
2. Right-click on a printer in the Details panel, then select the Client Printer Settings menu option. The printer settings dialog for that printer appears.

3. Enable or disable this printer for one or more target devices using either of the following options:
   - In the Enable column, select the check box next to each target device.
   - Select the check box under the dialog's Enable heading to enable or disable this printer for all target devices assigned to the virtual disk.

4. To select this printer as the default printer for target devices accessing this virtual disk, select from the following methods:
   - Select the Default check box in the dialog's Default heading to set this printer as the default for all target devices assigned to this virtual disk.
   - Highlight one or more target devices, then right-click to open the context menu. Select from the following menu options: Default, NotDefaultAll, DefaultAll Not Default.
   - In the Default column, select the check box next to each target device that uses this device as the default printer. If there is only one printer, that printer is automatically set as the default printer.

5. Click OK to save settings for this printer and exit the dialog.

### Enabling printers for target devices using the printers group folder

Use this method to select printer settings for a single target device. Printer settings include enable, disable, and default.

1. Under the target device virtual disk, click the Printers group folder in the tree. Printers that are associated with that group appear in the Details panel. By default, printers are not enabled for a target device and the first printer listed is set as the default printer.

2. Select or deselect the Enable check box next to each printer to enable or disable the printer for this target device. You can also choose from one of the additional selection methods that follow.

   In the Details panel:
   - Select or unselect the Enable check box within the table heading to enable or disable all printers.
   - Highlight a printer, then use the space bar to enable or disable printers.

**Tip:**

After selecting printer settings for a single target device, you can duplicate these settings using the Copy and Paste features.


Enabling printers using copy and paste

Use this method to set the printer settings that exist for one target device for other target devices that use the same vDisks. Printer settings include enable, disable, and default. This method is useful when adding new target devices.

1. In the console, right-click the target device that you want to copy printer settings from.
2. Select the Copy menu option. The Copy target device properties dialog appears.
3. Under Options, select Printers, then click OK to exit the dialog.
4. In the navigation tree, highlight the Target Devices directory so that all target devices appear in the Details panel.
5. Highlight one or more target devices that you want to paste the printer settings to. Printer settings include enable, disable, and default.
6. Right-click the highlighted target devices, then select the Paste menu option.

Enabling printers using an existing target device as a template

Use this method if you want all new target devices that are added to your network to automatically share printer settings. Printer settings include enable, disable, and default.

1. In the console, double-click the target device that you want to select as the template. The Target Device Properties dialog appears.
2. On the General tab, select the Set as default target device option.
3. Click OK to exit the dialog.

Enabling the printer management feature

After you assign printers to target devices, the printer management feature must be enabled before any printers on the target device can be removed. Until printer management is enabled, all printers installed on the target device are available to the target device. Once the feature is enabled, any changes to target devices printer settings become available the next time the target device boots from the virtual disk.

Important:

The printer management feature is only recommended if you are not using Active Directory.

If the printer management feature is disabled and a target device boots from a virtual disk that has printers installed on it, that target device has access to all printers on that virtual disk. If the printer management feature is enabled and the target device boots from that same virtual disk, that target device can only access those printers.
To enable or disable printers on a selected virtual disk

1. In the console, expand the server node in the tree panel, then select the virtual disk that you want printers enabled or disabled on.
2. Select **File Properties** from the right-click menu, then select the **Options** tab.
3. Under **Printer Settings**, select the **Enable the Printer Settings** check box option to enable settings, or leave the check box blank to disable printer settings.
4. If the **Enable the Printer Management** check box is selected, the menu options appear checked when the **Printers group** is selected.
5. If the **Enable the Printer Management** check box appears disabled, all printers exist on the selected virtual disk.

You can also choose from the following methods to enable or disable the printer management feature using right-click menus:

- **Printers Group** - In the navigation tree, expand a server node, then expand the virtual disk for which you want to disable printer management. Right-click on the **Printers** folder for that virtual disk, then select the **Disable Printer Management** option.

- **Virtual Disk** - In the navigation tree, under servers, right-click on the virtual disk for which you want to disable printer management, then select the **Disable Printer Management** option.

**Views**

May 22, 2019

The Citrix Provisioning console view provides a method that allows you to quickly manage a group of devices. Views are typically created according to business needs. For example, a view can represent a physical location, such as a building or user type. Unlike device collections, a target device can be a member of any number of views.

Farm administrators create and manage views in the console tree’s **Farm > Views** folder. Farm views include any target device that exists in this farm. Site administrators can create and manage views in the console tree’s **Farm > Sites > YourSite > Views** folder. Site views can only include target devices that exist within that site, **YourSite**.

**View properties**

To display or edit the properties of an existing view, right-click on the view in the console, then select the **Properties** menu option. The **View properties** dialog displays.
View properties are described in the tables that follow.

**General tab**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name given to this view.</td>
</tr>
<tr>
<td>Description</td>
<td>Describes the purpose of this view.</td>
</tr>
</tbody>
</table>

**Members tab**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member of this view</td>
<td>Lists target device members that belong to this view.</td>
</tr>
<tr>
<td>Add</td>
<td>Opens the Select Devices dialog, from which target devices to add to this view are selected.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes highlighted target devices from this view.</td>
</tr>
</tbody>
</table>
Managing views in the Citrix Provisioning console

Use the information in this section to manage views.

Creating a view

1. In the console, right-click on the Views folder where the new view exists, then select the Create view menu option. The View Properties dialog appears.
2. On the General tab, type a name for this new view in the Name text box. Optionally include a description, then click the Members tab.
3. Click the Add button to add new target device members to this view. The Select Devices dialog appears.
4. From the menus, select the site, then the device collection that you want to add target devices from. All members of that device collection appear in the list of available target devices.
5. Highlight one of more target devices in this collection, then click Add to add them to the new view. To add more target devices from other device collections, repeat steps 4 and 5.
6. Click OK to close the dialog. All selected target devices now display on the Members tab.

Pasting device properties

To copy and paste device properties to members in a view:

1. In the console details pane, right-click on the target device that you want to copy properties from, then select Copy device properties. The Copy Device Properties dialog appears.
2. Select the check box next to the properties that you want to copy, then click Copy. The properties are copied to the clipboard and the dialog closes.
3. Right-click on the view containing the target devices that inherit the copied properties, then select the Paste device properties menu option. The Paste Device Properties dialog appears to display the name and properties of the target device that were copied.
4. Under the Paste to table heading, highlight the target devices that inherit these properties, then click Paste.
5. Click Close.
Deleting a view

If a view becomes obsolete, you can delete the view. Deleting a view does not delete the target device from the collection.

1. In the console’s tree, right-click on the view folder that you want to delete, then select the **Delete** menu option. A confirmation message appears.
2. Click **OK** to delete this view. The view no longer displays in the console tree.

Refreshing a view

After modifying a view, refresh the view before those changes appear in the console. To refresh the view, right-click on the view in the tree, then select the **Refresh** menu option.

Booting devices within a view

1. Right-click on the view in the console tree, then select the **Boot devices** menu option. The **Target Device Control** dialog displays with the Boot devices menu option selected in the **Settings** menu. By default, all devices are highlighted in the **Device** table.
2. Click the **Boot devices** button to boot target devices. The **Status** column displays the **Boot Signal status** until the target device boots. As each target device successfully boots, the status changes to **Success**.

Restarting devices within a view

1. Right-click on the view in the console tree, then select the **Restart devices** menu option. The **Target Device Control** dialog displays with the **Restart devices** menu option selected in the **Settings** menu. By default, all devices are highlighted in the **Device** table.
2. Type the number of seconds to wait before restarting target devices in the **Delay** text box.
3. Type a message to display on target devices in the **Message** text box.
4. Click the **Restart devices** button to restart target devices. The **Status** column displays the **Restart Signal status** until the target device restarts. As each target device successfully restarts, the status changes to **Success**.

Shut down devices within a view

1. Right-click on the view in the console tree, then select the **Shut down devices** menu option. The **Target Device Control** dialog displays with the **Shut down devices** menu option selected in the **Settings** menu. By default, all devices are highlighted in the **Device** table.
2. Type the number of seconds to wait before shutting down target devices in the **Delay** text box.
3. Type a message to display on target devices in the **Message** text box.
4. Click the **Shutdown devices** button to shut down target devices. The **Status** column displays the **Shutdown Signal status** until the target device shuts down. As each target device successfully shuts down, the status changes to **Success**.

**Sending messages to target devices within a view**

To send a message to target devices members within a view

1. Right-click on the view in the console tree, then select the **Send message menu** option. The **Target Device Control** dialog displays with the **Message to devices** menu option selected in the **Settings** menu. By default, all devices are highlighted in the **Device** table.
2. Type a message to display on target devices in the **Message** text box.
3. Click the **Send message** button. The **Status** column displays the **Message Signal** status until target devices receive the message. As each target device successfully receives the message, the status changes to **Success**.

**Administrative roles**

November 5, 2019

The administrative role assigned to a group of users controls viewing and managing objects within a Citrix Provisioning server implementation. Citrix Provisioning uses groups that exist within the network, Windows, or Active Directory Groups. All members within a group have the same administrative privileges within a farm. An administrator has multiple roles if they belong to more than one group.

The following administrative roles can be assigned to a group:

- Farm administrator
- Site administrator
- Device administrator
- Device operator

After a group is assigned an administrative role using the Citrix Provisioning console, certain requirements are required. If a member of that group attempts to connect to a different farm, a dialog displays requesting that you identify a provisioning server within that farm. Use either the Windows credentials you are currently logged in with, the default setting, or enter your Active Directory credentials. Citrix Provisioning does not support using both domain and workgroups simultaneously.

The role associated with the group determines your administrative privileges within this farm. Group role assignments can vary from farm to farm.
Managing farm administrators

Farm administrators view and manage all objects within a farm, and also create sites and manage role memberships throughout the entire farm. In the Citrix Provisioning console, administrators perform farm-level tasks.

When the farm is first configured using the Configuration Wizard, the administrator that creates the farm is automatically assigned the Farm Administrator role. While configuring the farm, that administrator selects the option to use either Windows or Active Directory credentials for user authorization within the farm. After an administrator runs the Configuration Wizard, more groups can be assigned the farm administrator role in the console.

To assign more farm administrators

1. In the console, right-click on the farm to which the administrator role is assigned, then select Properties. The Farm Properties dialog appears.
2. On the Groups tab, highlight all the groups assigned administrative roles in this farm, then click Add.
3. On the Security tab, highlight all groups to which the farm administrator role is assigned, then click Add.
4. Click OK to close the dialog box.

Note:

The authorization method displays to indicate if Windows or Active Directory credentials are used for user authorization in this farm.
Managing site administrators

Site administrators have full management access to all the objects within a site. For example, the site administrator manages provisioning servers, site properties, target devices, device collections, virtual disk assignments pools.

If a farm administrator assigns a site as the owner of a particular store, the site administrator can also manage that store. Managing a store includes adding and removing virtual disks from shared storage or assigning provisioning servers to the store. The site administrator can also manage device administrator and device operator memberships.

To assign the site administrator role to one or more groups and its members

1. In the console, right-click on the site for which the administrator role is assigned, then select Properties. The Site Properties dialog appears.
2. Click the Security tab, then click the Add button. The Add Security Group dialog appears.
3. From the menu, select each group to associate with the site administrator role, then click OK.
4. Optionally, repeat steps 2 and 3 to continue assigning more site administrators.
5. Click OK to close the dialog.

Managing device administrators

Device administrators manage device collections to which they have privileges. Management tasks include assigning and removing a virtual disk from a device, editing device properties and viewing read-only virtual disk properties. Device collections consist of a logical grouping of devices. For example, a device collection might represent a physical location, a subnet range, or a logical grouping of target devices. A target device can only be a member of one device collection.
**To assign the device administrator role to one or more groups and its members**

1. In the console, expand the site where the device collection exists, then expand the **Device Collections** folder.
2. Right-click on the device collection that you want to add device administrators to, then select **Properties**. The **Device Collection Properties** dialog appears.
3. On the **Security** tab, under the **Groups with Device Administrator access** list, click **Add**. The **Add Security Group** dialog appears.
4. To assign a group with the device administrator role, select each system group that requires device administrator privileges, then click **OK**.
5. Click **OK** to close the dialog box.

**Managing device operators**

A device operator has administrator privileges to perform the following tasks within a device collection for which they have privileges:

- Boot and reboot a target device
- Shut down a target device

**To assign the device operator role to one or more groups**

1. In the console, expand the site where the device collection exists, then expand the **Device Collections** folder.
2. Right-click on the device collection that you want to add device operators to, then select **Properties**. The **Device Collection Properties** dialog appears.
3. On the **Security** tab, under the **Groups with Device Operator access** list, click **Add**. The **Add Security Group** dialog appears.
4. To assign a group the **Device Operator** role, select each system group that requires device operator privileges, then click **OK**.
5. Click **OK** to close the dialog box.

**Modifying the search approach for AD environments**

For some AD environments containing configurations with complex nested groups and domains with many trust associations, the default method might be unable to find the user’s expected administrative memberships. To resolve such scenarios, use a registry setting to change the search approach:

1. In the registry setting, locate `HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ProvisioningServices`.
2. Create a DWORD named “DomainSelectOption”.
3. In the DomainSelectOption DWORD, set one of the following values (in decimal format) for the desired search approach:

- 0 – The default search. This method searches the user’s domain followed by administrative group domains.
- 1 – Search in the user’s domain and in the administrative group domain, followed by other trusted domains within a user’s domain.
- 2 – Obsolete.
- 3 – Search in the user’s domain followed by administrative group domains. The groups that are discovered are further enumerated over the parent’s domain.
- 4 – Search the user’s domain and in the administrative group domain, followed by other trusted domains within a user’s domain. The groups that are discovered are further enumerated over the parent’s domain.
- 5 - Search the user’s group membership from token groups in the user’s domain and in the administrative group domain.
- 6 - Search the user’s group membership from token groups in the user’s domain and in the administrative group domain, followed by other trusted domains within a user’s domain.
- 7 - Search the user’s group membership directly from authorization groups.
- 8 - Search the user’s group membership directly as “Member Of” groups.

Advanced concepts

May 24, 2019

These articles offer a deeper dive into the Citrix Provisioning product documentation. Use the information in these articles to reduce deployment time through expert techniques. The articles cite the technical expert or experts who have authored the content.

Enable SQL Server Always On multi-subnet failover

May 10, 2019

Citrix Provisioning supports SQL Server Always On failover in multi-subnet environments. The Citrix Provisioning server requires the SQL server native client. This requirement ensures that database access occurs via the ODBC port.

Ensure that the provisioning server is connecting to an Always On availability group listener containing the Failover Cluster Instance when enabling MultiSubnetFailover.
**Tip:**

The SQL server native client is part of the Citrix Provisioning installer. No additional installation procedures are necessary to use this functionality.

Enable always on failover using the **Enable MultiSubnetFailover for SQL** field on the **Database Server** page in the Citrix Provisioning Configuration Wizard. To avoid potential configuration conflicts with other Citrix Virtual Apps and Desktops components, use only the configuration wizard to enable this feature.

**Note:**

For more information, see [SQL Always On for SQL Server 2012 and 2014](#).

### To enable SQL server always on in multi-subnet environments

1. After launching the Citrix Provisioning Configuration Wizard, access the **Database Server** screen.
2. In the **Database Server** screen:
   - Specify the Always On availability group listener in the **Server name** field.
   - Specify the Instance name.
   - Optionally specify the TCP port number.
3. Select the **Enable MultiSubnetFailover for SQL Server Always On** check box.
4. Click **Next** to continue with the configuration wizard.
SQL basic availability groups

January 9, 2019

A basic availability group supports a failover environment containing a single database. SQL basic availability groups are configured the same way as SQL Always-On High Availability groups, with the following differences:

- Limit of two replicas (primary and secondary).
- No read access on secondary replica.
- No backups on secondary replica.
- No integrity checks on secondary replicas.
- Support for one availability database.
- Basic availability groups cannot be upgraded to advanced availability groups. The group must be dropped and readded to a group that contains servers running only SQL Server 2016 Enterprise Edition.
- Basic availability groups are only supported for Standard Edition servers.
- Basic availability groups cannot be part of a distributed availability group.

Tip:
For multi-subnet environments, see Enable SQL Always On multi-subnet failover.

Storage migration within the same host

May 10, 2019

Citrix Provisioning improves storage migration within the same host by updating how Citrix Studio integrates OS storage within a VM. To use this functionality:

1. In Citrix Studio, set the delivery group, containing members the desired target devices, to maintenance mode.
2. Shut down all provisioned target devices.
3. Go to Configuration > Hosting and select the Host resource that you want to change. In Actions portion of the screen, click Edit Storage.
4. In OS, Temporary, and Personal vDisk Storages, clear the old storage. Changing the storage places the storage into Superseded status. Click Remove… to permanently remove it. Select the new storage you are going to use.
1. Go to the hypervisor and migrate the VMs to the new storage. Some hypervisors (ESX and VMM) have meta data for VMs. Move them also.
2. Disable maintenance mode on the delivery group.
3. Boot all the provisioned target devices.

Managing for highly available implementations

May 10, 2019

Establishing a highly available network involves identifying critical components, creating redundancy for these components, and ensuring automatic failover to the secondary component if the active component fails. Critical components include:

- Database
- Provisioning servers
- vDisks and storage

Citrix Provisioning provides several options to consider when configuring for a highly available implementation, including:
• Database
  – **Offline database support**, which allows Citrix Provisioning servers to use a snapshot of the database if the connection to the database is lost.
  – **Database mirroring**.
• Citrix Provisioning servers
  – **Provisioning server failover**. If a server becomes unavailable, another server within the site can provide active target devices with the virtual disk.
  – **Managing servers**. You can load balance between provisioning servers to prevent overload and to allow server capacity to be used more effectively and efficiently.
• vDisks and Storage
  – **Configuring highly available shared storage**

**Offline database support**

May 10, 2019

When offline database support is enabled on the farm, a snapshot of the database is created and initialized at server startup. The Stream Process continually updates the snapshot.

When the database becomes unavailable, the Stream Process uses the snapshot to get information about the Citrix Provisioning server and the target devices available to the server. This process allows servers and target devices to remain operational. However, when the database is offline, management functions and the console become unavailable.

**Tip:**

The snapshot for offline database support is in memory.

When the database connection becomes available, the Stream Process synchronizes any server or target device status changes made to the snapshot, back to the database.
Considerations

These features, options, and processes remain unavailable when the database connection is lost, even if the **Offline Database Support** option is enabled:

- AutoAdd target devices
- Virtual disk updates
- Virtual disk creation
- Active Directory password changes
- Stream Process startup
- Image Update service
- Management functions: PowerShell, MCLI, SoapServer, and the Console

Enabling offline database Support

1. In the Citrix Provisioning console tree, right-click on the **Farm**, then select **Properties**. The **Farm Properties** dialog appears.
2. On the **Options** tab, select the **Offline Database Support** check box.
3. Restart Stream services.
Database mirroring

May 10, 2019

If you mirror a Microsoft SQL database and the primary version becomes unavailable, Citrix Provisioning supports the mirrored version, resulting in improved overall availability.

Database mirroring can be implemented in a new or existing farm and requires the following high-level tasks:

• Creating the Citrix Provisioning MS SQL primary database (created when running the Installation Wizard on the server)

  Note:
  For database mirroring to function, the recovery model must be set to Full.

• Identifying the primary database server and instance (identified when running the Configuration Wizard)

• Identifying an existing MS SQL failover database server (identified, not created, when running the Configuration Wizard)

• Configuring mirroring between the primary and failover database servers (configured using MS SQL database server tools)

Citrix recommends that you start the failover server before enabling database mirroring in the farm. For information on configuring the MS SQL failover server, see https://technet.microsoft.com/en-us/library/ms188712.aspx.

Tip:
Use the information in this article configure database mirroring using the configuration wizard.

Run the Configuration Wizard to specify the new failover server so that the status of the Citrix Provisioning farm correctly reports the new settings. After rerunning the wizard, some services, including the stream service, restart so that the farm has the new failover server settings.

Enabling mirroring when configuring a New Farm

1. Start the Configuration Wizard on a server that resides in the new farm.
2. While running the wizard, when the Farm Configuration page displays, select the Create Farm radio button to create a farm, then click Next.
3. Type or use the Browse button to identify the primary database server and instance names. Optionally, enter a TCP port number to communicate with this database server.
4. Enable the Specify database mirror failover partner option.
5. Type or use the **Browse** button to identify the failover database server and instance names. Optionally, enter a TCP port number for communication with this server.

6. Click **Next**. If the failover database was previously configured and is running, Citrix Provisioning connects to it. If the failover database server has not been created or is not running, an error message displays, indicating a failure to connect. In this case, when prompted, click **Yes** to continue (the failover database can be created and configured after the new farm is created).

7. On the **New Farm** page, enter a name for the new database on the primary database server, then complete any additional requested information.

8. Click **Next**.

9. Complete the remaining wizard pages.

**Enabling mirroring within an existing Farm**

To enable mirroring within an existing farm:

1. Confirm that the primary and failover database servers are up and running.
2. Using MS SQL server tools, mirror the Citrix Provisioning database to a database on the failover database server.
3. Run the Configuration Wizard on each server.
4. Identify the farm by choosing either the **Farm is already configured** or the **Join existing farm** option on the **Farm Configuration** page.
5. On the Database Server page, select the primary and failover database servers and instance names, then enable the database mirror failover feature.
6. Complete the remaining wizard pages.

**SQL Always On for SQL Server 2012, 2014, and 2016**

May 10, 2019

Citrix Provisioning supports the SQL Always On high availability and disaster recovery solution. Consider the following:

- The SQL 2012 native client is required. This client is an optional prerequisite in the Citrix Provisioning server install process.
- Citrix Provisioning is only aware of and interacts with Always On through the listener DNS name.
- The database must be part of the pre-made high availability group.
- The listener DNS name and high availability group are part of the procedures to create SQL Always On.
- The soap/stream services user must be manually configured to have full permission to each SQL server part of the Always On configuration.
• Citrix Provisioning is not aware of the individual SQL server/cluster behind SQL Always On.

Note:
See Supported Databases for XenApp and XenDesktop Components in the Knowledge Center for additional information about supported databases and clients.

Provisioning server failover

May 10, 2019

All Citrix Provisioning servers within a site that can access a virtual disk provide the disk to target devices. On shared storage, multiple servers access the same physical files, allowing a target device to establish a connection on an alternate server.

This failover permits a connection to the active server if the connection is interrupted for any reason. When failover occurs, a target device does not experience any disruption in service or loss of data.

Note:
If a server failover occurs, only those servers with access to an identical replicated virtual disk provide that virtual disk to target devices. For example, if a virtual disk is replicated across three servers and one of the them is updated, that virtual disk is no longer identical. It is not considered if a server failover occurs. Even if the same exact update is made to two of the virtual disks, the timestamps on each differ, resulting in disks that are no longer identical.

Citrix Provisioning does not support virtual disk high availability on local storage in Private Image mode or vDisks that are currently in maintenance mode.

If load balancing is enabled and a server providing that virtual disk fails, the load is automatically balanced between the target device and the remaining servers. When load balancing is not enabled, a single server is assigned, providing the virtual disk to target devices. In such situations failover does not occur.

For information on automatically balancing the target device load between servers, see Managing Servers.
The server accessed by the target device does not necessarily become the one that accesses the virtual disk. Once connected, if one or more servers can access the virtual disk for this target device, the server that is least busy is selected.

To force all target devices to connect to a different server, stop the Stream Service on that server. Upon shutdown, the Stream Service notifies each target device to relogin to another server.

**Testing target device failover**

To ensure that devices can failover successfully, complete the following:

1. Double-click the **vDisk status icon** on the target device; note the IP address of the connected Citrix Provisioning server.
2. Right-click the connected server in the Citrix Provisioning console. Select **Stream Services**, then click **Stop**.
3. Confirm that the IP address of the connected server changes to that of an alternate server in the virtual disk status dialog.
Configuring for high availability with shared storage

May 10, 2019

Citrix Provisioning servers are configured to access your shared-storage location, and supports various shared-storage configurations. The configuration steps for highly available storage in the network vary depending on shared-storage configurations.

Warning:

Installing Citrix Provisioning affects the following registry key:

```
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MRXSmb\Parameters\OplocksDisabled
```

Changing this registry key disables Windows Opportunity Locking, which provides the fastest possible failover time when contact with the active Citrix Provisioning server is lost. Without this change, failover times can take up to one minute. During this time, Windows does not allow access to the virtual disk file that was in use by the failed server. By disabling Windows Opportunity Locking on Citrix Provisioning servers, the Stream Service can have immediate access to virtual disk files. However, Windows Opportunity Locking reduces caching of remote virtual disk data for the entire server.

Windows shared-storage configuration

When using a Windows shared storage location, service account credentials (user account name and password) must be a domain account that is configured on each Citrix Provisioning server. This method is used to access the Stream Service and the shared storage system.

Creating stream service account credentials on the domain controller

The stream service runs under the user account. When the stream service accesses a virtual disk stored locally on the server, the local user rights provide full access. However, when the database or virtual disk is on a remote storage device, the streaming server must use a domain account with rights to both the provisioning server and the remote storage location. An administrator must assign full control rights to the stream service account in order for it to read and write to the remote storage location.

An administrator creates service account credentials in Active Directory and assigns the credentials to the stream service on all Citrix Provisioning servers that participate in high availability. Alternatively, an existing domain user account can be given full control rights to the network share and be assigned to the Stream Service.

Consider the following when creating service account credentials:
You must be logged on as an administrator or a member of the Administrator group to create a domain account.

Clear the User must change password at next logon check box.

Assigning stream service account credentials manually

When running the Configuration Wizard on a provisioning server, you are prompted to enter an account name and password for the Stream Service to use. This account must have access permissions for any stores it is given access to, in addition to permissions in SQL Server for database access. If necessary, credentials can be assigned manually.

To assign the Service account credentials to the Stream Service:

1. Open the Windows Control Panel.
2. Go to Administrative Tools > Services.
3. Double-click on the first Citrix Provisioning Stream Service name in the Services list.
4. On the Log On tab, select This Account, then click Browse.
5. Click Locations, select the domain node, then click OK.
6. Type the name of the Stream Service user account, then click Check Names.
7. Click OK to close the Select User dialog.
8. On the Log On tab, enter and confirm the Stream Service account password, then click OK.

Configuring storage access

The stores that contain the vDisks must be shared, and the Service account credentials need to have access to remote storage for vDisks, with the appropriate permissions.

To share your virtual disk's stores folders, and grant access permissions to your Service account credentials:

1. In Windows Explorer, right-click on the folder that contains the database and virtual disk folders. For example, if the database and virtual disk files are stored in the default C:\Program Files\Citrix\Provisioning Services folder, right-click on that folder.
2. Select Sharing and Security from the shortcut menu.
3. Enable the Share this folder radio button, then optionally enter a share name, and comment.
4. Click Permissions.
5. If the Service account credentials user name does not appear in the Group or user names list, click Add. Enter the user name of the Service account credentials, and click Check Names to verify.
6. Click OK.
7. Select the service account credentials user name.
8. Enable the **Full Control** check box (the **Full Control** check box and all additional check boxes are selected).

9. Click **Apply**.

10. Select the **Security** tab.

11. If the Service account credentials user name does not appear in the Group or user names list, click **Add**. Enter the user name of the Service account credentials, then click **Check Names** to verify.

12. Click **OK**.

13. Select the **Service account credentials** as the user name.

14. Enable the **Full Control** check box, then click **Apply**.

15. Click **OK**.

**SAN configuration**

If you are storing the database and vDisks on a SAN, use local system accounts for the Stream Service. Unlike a Windows network share, creating special Service Account Credentials to guarantee access to your data is not necessary to guarantee access to your data.

Usually, a SAN configuration allows setting up as if the database and vDisks were stored locally on the Citrix Provisioning server.

**Configuring the boot file for high availability**

May 10, 2019

A Citrix Provisioning server can be selected as one of the servers used to connect target devices during the boot process. For a configuration to be highly available, at least two login servers must be listed in the boot file (maximum of four servers).

The target device boot file contains the IP addresses of up to four login servers, in addition to other configuration information. The boot file lists the servers that a target device can contact to get access to the Citrix Provisioning farm. The server that is contacted hands the target device off to a different server that is able to provide the target device with its virtual disk.

**Note:**

A shared storage system ensures the availability of the Citrix Provisioning server vDisks. Depending on the type of shared storage, the vDisks use either the Universal Naming Convention (UNC) or the usual DOS naming convention.
Adding Citrix Provisioning servers to the boot file

Add servers to the boot file to provide a target device with the information necessary to contact the Stream Service.

When configuring a server, the wizard allows you to select the server for TFTP services. There is one TFTP server per farm. If target devices are on multiple network segments, and each segment is configured as an independent site, then one TFTP server per site (network segment) is used.

Citrix Provisioning servers can also be configured as login servers in the Citrix Provisioning console using the Configure Bootstrap dialog.

Select from either method to add servers to the boot file.

Adding login servers using the configuration wizard

To add and configure the first Citrix Provisioning server as the TFTP and login server using the Configuration Wizard:

1. Run the Configuration Wizard and when presented with the TFTP option and bootstrap location dialog, select the Use the Provisioning Server TFTP Service option.

2. Enter or browse for the bootstrap file location, then click Next. The default location is: C:\Documents and Settings\All Users\Application Data\Citrix\Provisioning Services\Tftpboot

   Note:
   If a previous version of the Citrix Provisioning server component was installed on this server, change the default location from C:\Program Files\Citrix\Provisioning Server\TFTPBoo or C:\Documents and Settings\All Users\Application Data\Citrix\Provisioning Server\TFTPboot to: C:\Documents and Settings\All Users\Application Data\Citrix\Provisioning Services\TFTPboot. If the default is not changed, the bootstrap file cannot be configured from the Console and target devices fail to boot. The Missing TFTP error message appears.

3. In the servers boot list, click Add to add more login servers to the list. Use the Move up or Move down buttons to change the server boot preference order.

   Note:
   In an high availability implementation, at least two servers must be selected as boot servers.

4. To set advanced configuration settings, highlight the IP address of the server, click Advanced, then configure the bootstrap file. For field definitions, see Provisioning server properties.

5. Click OK, then click Next.
6. Review the configuration settings, then click **Finish** to confirm configuration settings and restart network services on this server. As configuration settings are saved, they display in the progress dialog.

7. To exit the Configuration Wizard, click **Done**.

**Adding login servers using the console**

To add and configure more Citrix Provisioning servers as login servers:

1. In the console, right-click on a server representing a login server, then select the **Configure Bootstrap** menu option. The **Configure Bootstrap** dialog appears.

   **Note:**

   Clicking **Read DB** populates the table with login servers that exist. When the Stream Service starts, it creates a record in the database with its own IP address. There is only one Stream Service option record per database. If the service is bound to multiple IP addresses, multiple records appear in the database. The Read DB function chooses only one IP address from each Citrix Provisioning server. This function can also be used to populate the boot file with the **Stream Service IP** settings already configured in the database.

2. Click **Add**. A new login server is added to the bootstrap file. The **Streaming Server** dialog appears.

3. Type the IP address and port number of this server in the appropriate text boxes.

4. Select to either use subnet mask and gateway settings using DHCP/BOOTP, or type in the settings to use, then click **OK**. The Citrix Provisioning server information displays in the list of available login servers.

5. To configure advanced bootstrap settings, on the **Options** tab, choose from the following settings:

   - Select **Verbose Mode** if you want to monitor the boot process on the target device (optional). Verbose mode enables system messaging on the target device.
   - Select **Interrupt Safe Mode** if the target device hangs early in the boot process.
   - Select the **Advanced Memory Support** check box. Do not use this option for older versions without PXE enabled.

6. Select from the following **Network Recovery Methods**:

   - Restore Network Connections - Selecting this option results in the target device attempting, indefinitely, to restore its connection to the server.
Note:
Because the Seconds field does not apply, it becomes inactive when the Restore Network Connections option is selected.

- **Reboot to Hard Drive.** Selecting this option instructs the target device to perform a hardware reset to force a reboot after failing to re-establish communications for a defined number of seconds. Determine the number of seconds to wait before rebooting. Assuming the network connection cannot be established, PXE fails, and the system reboots to the local hard drive. The default number of seconds is 50.

7. Under **Timeouts**, scroll for the **Login Polling Timeout**, in milliseconds, between retries when polling for Citrix Provisioning servers.

8. Under **Timeouts**, scroll for the **Login General Timeout**, in milliseconds, for all login associated packets, except the initial login polling time-out.

9. Click **OK** to save your changes.

**Troubleshooting**

March 28, 2019

Use the information in this section to troubleshoot Citrix Provisioning components:

- **Logging**
- **Auditing**
- **APIs**
- **CIS Problem Reporting**

**Logging**

June 5, 2019

Citrix Provisioning uses diagnostic tools for troubleshooting and managing a provisioning farm. These tools allow you to report a problem or use SQL Server Always On Tracing (AOT).

**Report a problem**

Use Citrix Insight Services (CIS) problem reporting to directly report problems you encounter to Citrix Support. CIS is a platform for instrumentation, telemetry, and business insight generation. For more
information, see CIS Problem Reporting.

**Tip:**
For details and the latest information about CIS and how it works, see the CIS website. Citrix account credentials are required to log in.

---

**Always on Tracing**

Citrix Provisioning Always on Tracing (AOT) functionality allows you to store AOT logs directly to disk. Use PowerShell (PoSH) on the Citrix Provisioning server to configure this functionality.

Consider the following:

- By default, this functionality is enabled.
- The default disk size is 500 MB.
- AOT logs are saved in C:\ProgramData\Citrix\Provisioning Services\Log\AOT.
- Use PoSH commands to modify or disable the feature.
- This functionality records CPU and IOPS.

**Tip:**
After enabling AOT, you may need to restart the telemetry service.

---

**Saving AOT logs to disk**

Use the Enable-CitrixTrace PoSH telemetry command to allow Citrix Provisioning to save trace files on disk at a given persistDirectory. The maximum size of the trace files (in bytes) stored is configured using the maxSizeBytes parameter. The sliceDurationSeconds parameter defines the duration, in seconds, of the slice/block trace.

The syntax for this command is:

```powershell
Enable-CitrixTrace -Listen
'
"trace":
{
"enabled": true,
"persistDirectory" : "C:\ProgramData\Citrix\Provisioning Services\Log\AOT",
"maxSizeBytes" : 524288000,
```
Auditing

May 22, 2019

Citrix Provisioning provides an auditing tool that records configuration actions on components within the provisioning farm. The auditing tool saves this information to the provisioning database. It provides administrators with a way to troubleshoot and monitor recent changes impacting system performance and behavior.

Administrator privileges determine viewable audit information and visible menu options. For example, a farm administrator views audit information within the farm. This functionality is unlike a device administrator who only views audit information for those device collections for which they have privileges.
Note:
Auditing is off by default. If the Citrix Provisioning database is unavailable, no actions are recorded.

To enable auditing

1. In the Citrix Provisioning console tree, right-click on the farm, then select the Farm Properties menu option.
2. On the Options tab, under Auditing, check the Enable auditing check box.

The following managed objects within a Citrix Provisioning implementation are audited:

- Farm
- Site
- Provisioning servers
- Collection
- Device
- Store
- vDisks

Recorded tasks include:

- Citrix Provisioning console
- MCLI
- SOAP Server
- PowerShell

Accessing auditing information

Auditing information is accessed using the provisioning console. You can also access auditing information using programmer utilities included with the product installation software:

- MCLI programmer utility
- PowerShell programmer utility
- SOAP Server programmer utility

In the console, a farm administrator can right-click on a parent or child node in the console tree to access the audit information. The audit information that other administrators can access depends on the role they were assigned.
To access auditing information from the Citrix Provisioning console

1. In the Citrix Provisioning console, right-click on a managed object, then select the Audit Trail menu option. The Audit Trail dialog displays or a message appears indicating that no audit information is available for the selected object.
2. Under Filter Results, select from the filter options, which enable you to filter the audit information based on, for example, user.
3. Click Search. The resulting audit information displays in the audit table. Columns can be sorted in ascending and descending order by clicking the Column heading:
   - **Action list number**: Based on the filter criteria selected, the order the actions took place.
   - **Date/Time**: Lists all audit actions that occurred within the Start date and End date filter criteria.
   - **Action**: Identifies the name of the Citrix Provisioning action taken.
   - **Type**: Identifies the type of action taken. This action is based on the type of managed object for which the action was taken.
   - **Name**: Identifies the name of the object within that object’s type, for which the action was taken.
   - **User**: Identifies the user’s name that performed the action.
   - **Domain**: Identifies the domain in which this user is a member.
   - **Path**: Identifies the parent of the managed object. For example, a device has a site and collection as parents.
4. To view more details for a particular action, highlight that action’s row within the results table, then click one of the option buttons that follow:
   - **Secondary**: Any secondary objects that this action affected. This option opens the Secondary dialog, which includes the type, name, and path information. This dialog allows you to view secondary object actions such as parameters, sub actions, and changes.
   - **Parameters**: Any other information used to process the action. This option opens the Parameters dialog. It includes the parameter name, representing the object, and the value.
   - **Sub Actions**: Extra actions that were performed to complete this action. This option opens the Sub Actions dialog, which includes action, type, name, and path information.
   - **Changes**: Any new or changed values (such as ‘Description’) associated with the object (such as a target device). This option opens the Changes dialog, which includes the name and new information.

Archiving the audit trail information

The farm administrator determines how long to make the audit trail information accessible before it is archived.
To configure the audit trail archiving

1. In the console, right-click on the farm, then select **Archive Audit Trail**. The **Archive Audit Trail**
dialog appears.
2. Browse to the saved location where audit trail information resides (XML file). The **Select File to
Archive Audit Trail To** dialog opens.
3. Select the location, then type the name of the new file in the **File name** text box.
4. Open the calendar from the **End date** menu, then select the date on which the audit trail infor-
mation is archived. The default is the current date.
5. To remove all audit information, select the **Remove information archived from the Audit Trail**
check box. Once the information is removed, it can no longer be accessed directly from Citrix
Provisioning. It exists in the XML file.
6. Click **OK**.

APIs

November 5, 2019

Citrix Provisioning APIs are available on the Citrix Developer Documentation site:

- SOAP Server Programmer’s Guide
- PowerShell with Object Programmer’s Guide

PowerShell SDK files after upgrading

Files located in **C:\Program Files\Citrix\PowerShell SDK** are missing after upgrading. This
issue occurs because the CDF version used by Citrix Provisioning does not match the version used by
other components associated with Citrix Virtual Apps and Desktops. As a result, newer CDF files have
a lower version number than previous ones. This issue does not affect the functionality of importing
CPV device collections into CVAD machine catalogs. To resolve this issue:

2. Mount the new Citrix Virtual Apps and Desktops ISO.
3. In the mounted ISO, navigate to **\x64\DesktopStudio**.
4. Right-click **PVS PowerShell SDK x64** to expose a contextual menu.
5. Select **Repair**.
6. Run the Repair option. The installation adds the two CDF files as needed.
**Active Directory group enumeration method**

The Citrix Provisioning console contains the Citrix Virtual Apps and Desktops Setup Wizard, providing integration tasks between Citrix Provisioning, Citrix Virtual Apps and Desktops and Windows Active Directory. The Wizard creates the VMs and any necessary objects in Citrix Provisioning, Citrix Virtual Apps and Desktops and Windows Active Directory.

**Note:**

This implementation was limited in earlier releases due to the absence of an exposed API. Without it, Citrix Provisioning users cannot execute various automated testing paradigms in their environments.

Citrix Virtual Apps and Desktops and Streamed VM Wizard functionality are exposed by a service on the Provisioning Server through a PowerShell API. This API provides a PowerShell front end. It can be used to automate the functionality provided by the Streamed VM Setup Wizard and the Citrix Virtual Apps and Desktops Setup Wizard.

**Tip:**

The Citrix Provisioning API service uses an SSL connection which requires you to configure an X.509 certificate on the Provisioning Server.

**Configure the X.509 certificate**

The Citrix Provisioning API service uses an SSL connection requiring an X.509 certificate on the provisioning server. The certificate’s CA certificate must also be present on the server and console machine.

To create a self-signed certificate for Citrix Provisioning API:

1. Download and install the Windows SDK for your provisioning server operating system.
2. Open a command prompt and navigate to the bin folder of the SDK. By default: C:\Program Files (x86)\Windows Kits\SDK_Version\bin\x64> and execute the following commands.
3. Create a certificate to act as your root certificate authority: `makecert -n "CN= PVSRoot CA" -r -sv PVSRoot CA.pvk PVSRoot CA.cer`.
5. Install the root CA certificate in the Trusted Root Certification Authorities location on the server and console Machines: `cert mgr -add "PVSRoot CA.cer"-s -r localMachine Root`.
6. Run the Configuration Wizard. On the **Soap SSL Configuration page**, select the created certificate.
Note:
When you run PowerShell commands, use the FQDN of the PVS Server for PvsServerAddress and 54324 (default) for PvsServerPort.

Using the Citrix Provisioning API

After installing the latest Citrix Provisioning server:

1. Run the configuration wizard.
2. Open the Services window on the provisioning server and verify that the Citrix Provisioning API is installed and configured to run as an administrator:

Tip:
The Citrix Provisioning API service uses an SSL connection which requires you to configure an X.509 certificate on the provisioning server.

1. Open a PowerShell window on your provisioning server:

   a. Import-Module $env:PROGRAMFILES\Citrix\Provisioning Services\Citrix.ProvisioningServices.dll.

The following image illustrates command options:

c. Ping the Citrix Provisioning API service: Get-PvsApiServiceStatus -PvsServerAddress FQDN of PVS Server -PvsServerPort Port PVS API is configured to listen on

Tip:
The provisioning server port number is the one used for SOAP server communication.

d. Log in to the Citrix Provisioning API (use either of the following commands):

   Use Domain/Username/Password parameters:

Get-PvsConnection -PvsServerAddress FQDN of PVS Server -PvsServerPort SOAP Port +1 PVS API is configured to listen on -Domain PVS Admin Domain -Username PVS Admin user name -Password PVSAdmin password

   Use Pass-in PSCredential object:

Get-PvsConnection -PvsServerAddressAddress of PVS Server PvsServerPort-Credentials PSCredential Object returned by Get-Credential

The following cmdlets are included with the Citrix Provisioning API implementation:

- Get-PvsApiServiceStatus. Pings the service to determine whether the service is up and running at a particular address/port.
- **Get-PvsConnection.** Log into the Citrix Provisioning API.
- **Clear-PvsConnection.** Logout of Citrix Provisioning API. This cmdlet adds the Auth Token to the blacklist.
- **Start-PvsProvisionXdMachines.** Used for Citrix Virtual Apps and Desktops Setup Wizard automation.
- **Start-PvsProvisionMachines.** Used for Streaming VM Setup Wizard automation.
- **Get-PvsProvisioningStatus.** Uses the ID returned from either of the previous two commands to get the status of the current provisioning session.
- **Stop-PvsProvisionMachines.** Uses the ID returned from either of the previous two commands to cancel the current provisioning session.

You can access examples for these PowerShell cmdlets using `Get-Help CommandName - Examples`:

Tip:
The rest of the PowerShell cmdlets are all part of the Database Access layer.

When connecting to the API using the `Set -PvsConnection` PowerShell command, a connection object is returned, resembling:

Within Citrix Provisioning, the user access control method is based on the user’s Active Directory login credentials and the administrative group configuration. As a result of this method, AD group enumeration repeatedly triggers events associated with Configuration Wizard and Console operations. In complex AD environments where spurious logins can occur, the system can become sluggish, with slow responses resulting in connection timeouts to the Citrix Provisioning console. This functionality resolves such issues by improving the method responsible for AD group enumeration.

Before this functionality, AD group enumeration occurred by scanning memberships associated with the user’s login in its domain and the entirety of the trusted domains. This process continues until all the user’s group memberships are determined, or if there are no additional domains to search. The identified groups are compared to the administrative groups defined in the database to determine the user’s access rights.

With this functionality, AD group enumeration is enhanced to intelligently search preferred domains for a user’s login memberships. This approach is different than searching the entirety of groups over all domains. The administrative group name associated with the user’s login credential is used to provide the preferred domain list. The user’s domain list is searched first, followed by the preferred list. During this search, if a farm’s administrative group is discovered, the search halts because the user already has full access rights to the Citrix Provisioning farm. This search paradigm also includes a mechanism that uses the domain security ID to verify if the domain contains the intended groups. This modified searching approach of domains for a user’s login membership addresses the needs of most AD environments, resulting in
faster Configuration Wizard and provisioning console operations.

CIS Problem Reporting

May 22, 2019

Citrix Provisioning allows you to report problems you encounter while using the software directly to Citrix Support. The support team uses the information to troubleshoot and diagnose the problem to improve Citrix Provisioning. This feature, along with the Customer Experience Improvement Program (CEIP), is used by Citrix to continually improve the software.

Note:
Participation in programs that help improve Citrix Provisioning is voluntary. Problem reporting, along with CEIP, are enabled by default. Use the information in this article to configure and use problem reporting.

How problem reporting works

Problem reporting works by sharing diagnostic information resulting from an event within Citrix Provisioning. It can be performed for a specific Citrix Provisioning server, or for a site:

- If you have an environment with multiple provisioning servers, each has had a different SOAP Service user. In such environments, the SOAP Service user must have read\write permissions to the network share when generating the diagnostic bundle.
- If you are reporting a problem for a specific provisioning server, only that server generates a diagnostic bundle that captures the event.
- If you are reporting a problem for a site, each provisioning server in the site generates a diagnostic bundle.
- Upload the diagnostic bundle directly to Citrix, or save it to a shared network drive and manually upload it later.

Note:
The diagnostic bundle is manually uploaded to the Citrix CIS website. Log in to this site using your Citrix credentials.

Using a token for the secure communication

When using problem reporting, a token is generated to associate the diagnostic bundle with your My Citrix account login credentials. Once the token is associated with your My Citrix credentials, it's stored
in the database for future problem reporting. This process eliminates the need to store your login credentials.

Note:
If you are using Problem Reporting for the first time and have not yet configured a login token, you are prompted to enter your My Citrix login credentials. Once you enter your login credentials, the token is generated in the database.

Configure the problem reporting feature

In the Citrix Provisioning Configuration Wizard screen:

1. Enter your Citrix user name and password.
2. Confirm the password.
3. Click Next.

Tip:
If you don’t have a secure token to authenticate your login credentials, the Problem Report Configuration screen indicates that The token required to submit problem reports is empty. Please reconfigure. The token can be generated by entering your credentials here or later using the Citrix Provisioning console.

The password and user name you specify are not saved. The token that is generated is used to associate your diagnostics bundle with your My Citrix account.
Report a problem

To report a problem you must first specify the options to use. You can either upload a bundle of diagnostic information using your Citrix user name, or you can generate diagnostic information locally to a ZIP file. Select an empty folder on a shared network drive accessible to all servers included in this problem report.

To report a problem

1. In the Citrix Provisioning console, expand the Sites node to display the server on which you want to report a problem.
2. Select the server, and right-click to display a context menu.
3. Click the Report a problem option.

4. In the Problem Report screen, select how to generate the diagnostic information:
   - Upload Diagnostics – Use the generated token to upload a diagnostic bundle (a ZIP file containing numerous files related to the problem).
   - Generate Diagnostics – Select an empty folder on a shared network drive that is accessible to the servers you have selected.
5. Click Next.
6. After selecting the method to report a problem, you can specify information to help describe the issue. In the **Specify Problem Details** screen:

   a. Enter a brief description that summarizes the problem. Once you enter the information for this mandatory field the remaining fields become editable.

   b. Optionally enter a support case number.

   c. Select the date when the problem occurred.

   d. Enter an approximate time when the problem occurred.

   e. Enter a description that characterizes the problem.

7. Click **Finish**.
After finishing the diagnostic report, the bundle is created on the server and uploaded. You can view the status of the most recent problem report from Server>Property>Problem Report.

After clicking Finish, the problem reporting function reports the issue for either a single server, or for each server in an entire site. Each server generates the problem report as a background task and uploads it to the CIS server. Or, alternately, saves the file to a shared network drive.

The **Status** field displays information about the state of the reporting mechanism. Once the process starts, use the **Done** button to dismiss the dialog to allow the process to continue in the background:
If you choose not to dismiss the dialog, the process continues in the foreground. Once completed, the **Problem Report** screen provides additional information *Check each Server’s Properties for results.* With this message, each server has completed the problem report generation process and saves the results.
Once the problem report is generated, you can view the results in the **Properties** screen. To view the report, select **Server>Properties**.
The **Problem Report** tab displays:

- **Most recent problem report.** This field displays the date and time of the most recent problem report attempt.
- **Summary.** This field describes the problem. The information is generated from the mandatory summary field specified when the administrator first created the report.
- **Status.** Describes the status of the most recent report. It indicates:
  - Success or failure
  - Whether the report was uploaded or saved to a shared network drive. If the report was saved to a drive, the full path where the file is located is displayed.