

Unicon epkg
User Manual

Unicon epkg User Manual

1

Table of Contents
Legal Notice & Disclaimer ... 3

Prerequisites ... 4

epkg: Motivation .. 4

epkg: Summary ... 5

QuickStart Guide ... 6

Creating a Simple EPM ... 6

Building Package for the First Time .. 8

Adding Files to Packages ... 10

Created Package Artifacts ... 12

Installing the Created Package .. 12

Releasing the Package .. 14

Installing the Build Output to a Container and Creating a Zip Archive of the Package for

Release ... 15

A Note about Package Signing .. 15

A Note about Dependencies .. 16

eLux Internals ... 16

Users on eLux ... 16

eLux Filesystem Layout 101 .. 16

General tips for the file system ... 22

Development Only: Mounting File System as Read-Write .. 22

Starting Services at Boot / systemd Services... 23

Starting User Programs At Login ... 24

Setting Correct Dependencies ... 24

epkg: Usage, Configuration, Installation Scripts .. 26

Configuration for epkg ... 26

Ways to Provide Files .. 27

Collisions and corrupts= .. 27

Scripts Executed During Package Build ... 27

Scripts executed before/during/after Installation .. 28

Determining Final Installation State ... 29

Special #include .. 29

Using Debian Repositories .. 30

Package Change Detection and Version Auto-Increment .. 31

Converting EPM packages from eLux RP6 to eLux 7 .. 31

Unicon epkg User Manual

2

epkg: Reference .. 32

Files .. 32

Global .. 32

Per FPM .. 43

EPM Categories .. 46

Bits and Pieces .. 47

Testing Versions .. 47

Feature Builds .. 48

Converting LEGACY .. 48

Multilib LEGACY .. 48

Files ... 49

Variables .. 50

Unicon epkg User Manual

3

Legal Notice & Disclaimer

© 2025 Cloud Software Group, Inc. and its affiliates, including Citrix Systems, Inc. and

Unicon GmbH. All rights reserved.

This document contains proprietary and confidential information of Cloud Software Group,

Inc. and its affiliates. No part of this document may be reproduced, transmitted, distributed,

or republished in any form or by any means without prior written consent. The information

provided herein is for informational purposes only and is subject to change without notice.

Cloud Software Group, Inc. and its affiliates disclaim all liability for the accuracy,

completeness, or timeliness of the information in this document and any errors or damages

that may arise from its use. No warranties, express or implied, including but not limited to

warranties of merchantability or fitness for a particular purpose, are provided.

eLux® and Scout Enterprise Management Suite® are registered trademarks of Unicon

GmbH in the European Union, the United Kingdom, and the United States. ScoutaaS® is a

registered trademark in the European Union, the United Kingdom, the United States, and

Japan. All other product names may be trademarks of their respective owners.

Unicon epkg User Manual

4

Prerequisites

● The eLux SDK is used to get access to epkg.

epkg: Motivation

Maintaining a full linux distribution running on several million fully managed devices results in

a few requirements regarding packaging and package maintenance:

● all the normal packaging demands like full control over what is installed where and

what is omitted, pre and post scripts, dependencies etc

● increased security since we can disable automatic third-party upgrades and can

verify all files before shipment

● scope of packages is more feature oriented, meaning a package contains all

software necessary for a specific feature regardless of how many different libraries,

projects or other input that feature needs. This is in contrast to the usual linux distro

packaging where one package is one project and if that project needs some other

libraries it is solved by having dependencies to potentially many different packages

that all only contain one library

● packages should be small to:

○ save local disk space

○ save network bandwidth during updates/installation

○ reduce attack surface

● to ease resource burdens it's necessary to easily consume existing debian

packages/pools or other archive formats to avoid redoing work that has already been

done by major linux distributions, like building packages from source

These requirements lead to the development of a custom package format and - later - a tool

to repackage software from Debian packages and various archiving formats: epkg

Features are:

● download packages from a Debian mirror, extract them and package only specific

files

● use various archiving formats like tar, gz, zip, ... and extract/repackage contents

during EPM package builds

● install files to different locations than in the original package

● create feature packages "FPM" within an EPM to allow administrators to select only

specific features of a package

● sign created packages

● directly upload packages to a eLux container after build

● create archives as output instead of EPMs/FPMs that can be used as initrds

Unicon epkg User Manual

5

epkg: Summary

epkg is the command line tool used to create eLux packages in the EPM and FPM formats.

It supports the following Modules: Build, Convert, ConvertFrom, Install, New, NewFrom, Info,

Sign, Size, UpdateCopyrightInfo and Upload

● Build: Build EPM and all its FPM

● Convert: Convert from an old metafile version to the newest.

○ This can also be used to convert Makefile based pre RP6 meta repositories

[LEGACY]

● ConvertFrom: Convert from a package tree to the latest metafile format [LEGACY]

● Install: Copy EPM and its FPM files to a container directory.

○ Note that this does not install packages on eLux. Rather this command just

copies created EPM and FPM packages to a configured container directory.

● New: Create empty meta repository files for the given EPM and FPM names

● NewFrom: Create empty meta repository files from a pre RP6 package tree

[LEGACY]

● Info: Get some information from the ebkepm. Used for example in automation scripts

ran on build servers.

● Sign: Creates a signature for the given file

● Size: Calculate the uncompressed size or parse a eluxman logfile to get the

compressed size

● UpdateCopyrightInfo: Update copyright md5sums and write them back to the

correct .md5sum files

● Upload: Upload EPM and its FPM to a webelias instance

In most cases, a developer creating eLux packages will only need the New and Build

commands.

Unicon epkg User Manual

6

QuickStart Guide

This quick start guide explains how to create an eLux package that packages the htop

interactive process viewer.

Creating a Simple EPM

A simple EPM can be created in a few easy steps. First we run epkg New in an empty

directory to create an empty EPM with 2 FPM packages

$ epkg New --epm my_epm --fpms my_epm_binaries --fpms my_epm_additional_feature

which creates a few new files in input/ and elux/ subdirectory. In particular, it creates file

input/ebkepm which contains most meta information about the created packages.

https://htop.dev/
https://htop.dev/
https://htop.dev/

Unicon epkg User Manual

7

We ignore most created files, but alter the install options for both our FPMs by updating

input/ebkepm. For this test package, we wish to achieve the following:

● my_epm_binaries FPM should be installed whenever the EPM is installed

(mandatory)

● Additional feature FPM my_epm_additional_feature should be deactivated by default.

Administrators can enable it if they require the features provided by the package.

To achieve this we set the values for installoption= in the correct section within

input/ebkepm:

● In section [FPM1] (the section where summary=my_epm_binaries) we use

installoption=2.

● In section [FPM2] we use installoption=0.

More information about installoptions can be found at Format#InstallOptions.

Unicon epkg User Manual

8

Building Package for the First Time

epkg will try to be helpful when necessary configuration is missing. We can try building our

package right away with the following parameters

● --container elux7 - to tell epkg that the package should target eLux 7

● --releaseType test - to build a test version. A test version build does not update any

md5 sum files (more on that later)

● --log - creates an additional log file for the build

but this leads to an error:

$ epkg Build --container elux7 --releaseType test

$ epkg Build --container elux7 --releaseType test

…

…

epkg: error: input/ebkepm: field category must be set in ebkepm section [EPM]

This error tells us that we have to define some category for our EPM (see: EPM Categories)

for the EPM the file input/ebkepm. Utility seems like a good choice for htop.

Retrying the build should now lead to a successful package build.

$ epkg Build --container elux7 --releaseType test

$ epkg Build --container elux7 --releaseType test

Release type: Test

Delete output

Building for amd64

Delete tmp

Update EBK Workspace

[my_epm_binaries]

Unicon epkg User Manual

9

[my_epm_additional_feature]

Running pre commands

Build epm and fpms

Copy input

 Copying ebkepm

my_epm_binaries

my_epm_additional_feature

Creating epm and fpms

 Creating package: my_epm

 Signing package: my_epm

 Creating package: my_epm_binaries

 Signing package: my_epm_binaries

 Creating package: my_epm_additional_feature

 Signing package: my_epm_additional_feature

We now see a few more files generated by the build

● input/ebkworkspace - a temporary file saving some information about the build. It can

be ignored and should not be added to version control

Unicon epkg User Manual

10

● epkg.log - a build log, which contains pretty verbose information about what epkg did

to build the package. For now it's not interesting, but it's a good thing to know it can

be created using the --log argument and contains essential information for example

why a certain FPM has been rebuild

● tmp/ - a temporary directory where all used input packages are extracted to. In this

build it contains no files (only another empty subdirectory debian). Once input

archives are added to a .debs or .thirdparty meta file, they will be saved here after

fetching

● output/ - this directory contains the actual build output in 2 additional subdirectory

○ container/ - here the EPM and FPM files from the build are. Basically

everything that will be copied to a container when using epkg Install or epkg

Upload

■ This is the main artifiact or package that you should ship to customers.

Customers will import the container/ contents into their production

container.

○ my_epm/ - this directory has the same name as the EPM. It contains some

spec files and a folder with each FPM's directory tree (if not empty)

However since the packages contain no files yet there is little point in installing such a

package.

Adding Files to Packages

We did not add any files to the FPM packages so far.

Let's do that now. In particular, we want to add binary /usr/bin/htop from the htop Ubuntu

package. To achieve this, we have to (1) update file elux/my_epm_binaries.debs to include

the htop Ubuntu package and (2) update elux/my_epm_binaries.install to include file

/usr/bin/htop from the htop Ubuntu package.

Adding additional files

add htop to the binaries .debs file; usually you'd edit the file with the editor of your choice

echo htop >> elux/my_epm_binaries.debs

add the htop binary to the .install file. We usually skip the leading /, but keeping the leading / also works

echo usr/bin/htop >> elux/my_epm_binaries.install

For our my_epm_addtional_feature FPM we want to add a custom file not imported from any

Ubuntu package. Rather we provide the file as-is to our package directory.

Adding additional files

add an (empty) configuration file for the additional feature, directly in input/

note: the directory name below input/ has to match the FPM name the file should be included in

mkdir -p input/my_epm_additional_feature/etc/my_epm

touch input/my_epm_additional_feature/etc/my_epm/additional_feature.conf

https://packages.ubuntu.com/jammy/htop
https://packages.ubuntu.com/jammy/htop
https://packages.ubuntu.com/jammy/htop

Unicon epkg User Manual

11

That's it. Let's build

$ epkg Build --container elux7 --releaseType test

$ epkg Build --container elux7 --releaseType test

Release type: Test

Delete output

Building for amd64

Delete tmp

Update EBK Workspace

epkg: error: If debian packages are defined repositoryName must be given

... and promptly run into an error.

Since we now have defined data that is pulled from a Debian repository, epkg needs to

know which Debian repository to pull from. Internally at Unicon we have separate

repositories for every release, so it's important to specify the exact repository.

See the section Using Debian Repositories to learn how to configure a repository. For now

let's assume we have a repository for Ubuntu 22.04 (jammy) named jammy-main configured

and call epkg again.

$ epkg Build --container elux7 --releaseType test --repositoryName jammy-main

$ epkg Build --container elux7 --releaseType test --repositoryName jammy-main

Release type: Test

Delete output

Building for amd64

Delete tmp

Update EBK Workspace

Creating fake apt directory...

Downloading debian packages for my_epm_binaries ...

[my_epm_binaries]

 Extracting debian packages

[my_epm_additional_feature]

Running pre commands

Build epm and fpms

Copy input

 Copying ebkepm

 Copying my_epm_additional_feature

my_epm_binaries

 Copy files

my_epm_additional_feature

Creating epm and fpms

Unicon epkg User Manual

12

 Creating package: my_epm

 Signing package: my_epm

 Creating package: my_epm_binaries

 Signing package: my_epm_binaries

 Creating package: my_epm_additional_feature

 Signing package: my_epm_additional_feature

$

The build was successful. Directory output/ contains the created packages.

Created Package Artifacts

Since the build was successful, let's re-check the directories

● tmp/debian now contains the downloaded htop_<version>.deb file

● tmp/ contains the full directory tree extracted from the .deb file. In this case all files

are within a tmp/usr/ subfolder

● output/container/... contains the newly created EPM/FPM files. They are now slightly

larger than before, since the additional files are included

○ This is the main artifact or package that you should ship to customers.

Customers will import the container/ contents into their production container.

● output/my_epm contains the full directory tree of both FPM packages

Furthermore we can inspect the EPM file by using the eluxbuild tool

$ eluxbuild -qip output/container/…/…epm

$ eluxbuild -qip output/container/UC_ELUX7-1.0-1/my_epm-0.0.1-1~testing.UC_ELUX7-1.0.epm

Name : my_epm Relocations: (not relocateable)

Version : 0.0.1 Vendor: Copyright (C) 2025 Unicon GmbH. All rights reserved.

Release : 1~testing Build Date: Thu 13 Feb 2025 10:28:19 AM CET

Install date: (not installed) Build Host: sbr-dev-hw

Group : EPM Source RPM: my_epm-0.0.1-1~testing.src.rpm

Size : 0 License: Copyright (C) 2025 Unicon GmbH. All rights reserved.

Summary : my_epm

Description :

$OPTION=2$

$FPM0=0,my_epm_binaries-0.0.1-1~testing.UC_ELUX7-1.0.fpm,284,2,1$

$FPM1=1,my_epm_additional_feature-0.0.1-1~testing.UC_ELUX7-1.0.fpm,2,0,1$

Installing the Created Package

Assuming you have a properly set up deployment environment with ELIAS and Scout, you

can now copy artifacts in output/container/ into your development container. If you do not

have such an environment, please contact your Scout administrator.

Unicon epkg User Manual

13

Load a given container using ELIAS and create an eLux IDF image that includes our newly

created package. Note that since htop is a command line application, we also have to

manually enable the Terminal programs (desktop_environment_terminal) FPM if we wish to try

out our package.

After updating an eLux device to the given IDF and preparing a custom XTERM application

that launches /usr/bin/htop , we can see that our package works as expected. Again, if you

are unsure how to achieve this, please contact your Scout administrator.

Unicon epkg User Manual

14

If you have a file explorer or terminal installed, you can also check the presence of the

custom my_epm_additional_feature FPM file.

Releasing the Package

So far we have only performed builds with –releaseType test. This results in EPM and FPM

files with a ~testing suffix. There is also the option to provide a different string instead of

'testing' using the --testVersion parameter. For example, --testVersion can be used to mark

build artifacts as belonging to a certain issue tracker ticket, e.g. --testVersion myproject~42.

Allowed values are shown in the output of epkg Build --help.

Note

It's a good idea to track EPM folders in version control. In 'release' mode certain

input/meta files are changed when epkg builds a package, to record internal state.

Committing those changes back to version control is essential for epkg to make correct

decisions for future builds.

More importantly we can make a release build using epkg Build --container elux7 --releaseType

release --repositoryName jammy-main --autoIncrementVersion

This build will do the following:

● produce EPM/FPM files without a ~testing suffix

● record md5sums of all relevant files in the per EPM and per FPM .md5 files

● automatically bump the release number of all changed FPM, meaning all FPM/EPM

versions of the form -X~testing will become -Z , where Z = X + 1 . For example:

Unicon epkg User Manual

15

○ my_epm-0.0.1-1~testing.UC_ELUX7-1.0.epm → my_epm-0.0.1-

2.UC_ELUX7-1.0.epm

○ my_epm_binaries-0.0.1-1~testing.UC_ELUX7-1.0.fpm → my_epm_binaries-

0.0.1-2.UC_ELUX7-1.0.fpm

The changed md5sum files should all be committed to version control to allow future builds

to use them: If for example only 1 FPM within an EPM is changed only that FPM will get

rebuilt. To make this decision epkg relies on the md5sum files from the most recent release

Build.

Installing the Build Output to a Container and Creating a Zip Archive of the

Package for Release

epkg has an module to automatically "install" a package to the container configured as

DevelopmentContainer in /etc/epkg/settings.ini.

To use it, simply call epkg Install ...args... where args are --releaseType and --testVersion (only

if --releaseType test). The arguments should take the same values that were provided when

building the package in the first place. In addition to the mentioned arguments there is also

an additional argument --createZip which can be used to directly create a zip archive of all

relevant files.

Since at Unicon the EPM builds and thus usage of the `epkg` tools are tightly coupled with a

strict release process, there are a few things to consider:

● Since any epkg build only builds FPMs which got changed since the last release

build, all EPM builds of a single package (and probably all packages) should be

"installed" to the same container. Otherwise all FPM that were not rebuilt will be

missing after epkg Install is executed

● Likewise epkg Install --createZip can only take FPM packages from the most recent

build from the current working directory. All other FPM packages need to be present

at the installation target or the zip archive cannot be created

● if --releaseType test is used during install existing packages will be overwritten without

asking. This means that testing versions can be rebuild, installed and tested again

and again with the same set of commands until an actual release build is performed

A Note about Package Signing

On package build or if being called with the sign command, epkg will create a signature for

the created packages. The signature has the same filename as the package with a .sig

appended at the end. The certificate and key combination can be configured in

/etc/epkg/settings.ini.

When packages are imported into the container with ELIAS, it can verify package signatures.

See udocs for managing certificates.

Package signatures can also be checked during installation/update of packages.

Documentation on how to configure this can be found in udocs.

https://udocs.unicon.com/en/#admin_guides/elias_18/elias_certificates/elias18_cert_pack.htm?TocPath=Administrator%27s%2520Guides%257CELIAS%252018%257CManaging%2520certificates%257C_____1
https://udocs.unicon.com/en/#admin_guides/elias_18/elias_certificates/elias18_cert_pack.htm?TocPath=Administrator%27s%2520Guides%257CELIAS%252018%257CManaging%2520certificates%257C_____1
https://udocs.unicon.com/en/#admin_guides/scout/setup/firmware/firmware_security.htm
https://udocs.unicon.com/en/#admin_guides/scout/setup/firmware/firmware_security.htm

Unicon epkg User Manual

16

For signature verification to work it is important that the certificate is present at

/setup/cacerts/**** during the installation/update process.

If the certificate is not present the installation/update process will fail

Please also note that package signature verification is not done during USB/PXE recovery

because this is treated as a safe and trusted environment. It is therefore possible to provide

certificates for package signature verification via package if that package is installed at

recovery time. Otherwise the certificates can also be transferred via scout file transfer.

A Note about Dependencies

The htop binary requires some shared libraries. Usually you need to be very careful about

adding correct dependencies in all FPM packages. In this case we (at least I do) know that

all those libraries are part of the default eLux system and cannot be removed.

So we do not need to set any requires= in our input/ebkepm. Usually you need to be very

careful to provide correct dependency information within the EPM.

eLux Internals

This section contains various details about the eLux Linux OS. Maintainers providing eLux

packages should make themselves familiar with eLux such that their package does not

conflict with any eLux conventions.

Users on eLux

● No matter what user got authenticated (if authentication is configured), all

unprivileged session processes are running as user "elux".

● All user specific data is wiped at the end of the session.

eLux Filesystem Layout 101

In general eLux adheres to the Filesystem Hierarchy Standard (FHS) with UsrMerge. There

are also some eLux specifics. The following table describes the root directories on eLux.

https://udocs.unicon.com/en/#admin_guides/scout/advanced_options/advanced_files.htm
https://udocs.unicon.com/en/#admin_guides/scout/advanced_options/advanced_files.htm
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://wiki.debian.org/UsrMerge
https://wiki.debian.org/UsrMerge

Unicon epkg User Manual

17

Directory Content Should files be

installed here?

eLux Specifics

/bin <symlink to

/usr/bin>

No. Use /usr/bin

/boot boot loader files

(e.g., kernels,

initrd)

Only by the kernel

EPM. Other exceptions

might exist.

/dev device files No. Populated

automatically by

operating system.

/etc static system

wide

configuration

Yes. Static

configuration goes here

This directory is part of an

overlay filesystem (tmpfs) and

as such is reset back to the

installation state on each boot.

This also means all files put

here can be changed at run-

time.

Configuration that should be

changeable in a persistent way,

should be put in /setup (or

symlinked there if it cannot be

moved)

/home/elux user home Usually not, especially

on reboot.

This directory is part of an

overlay filesystem (tmpfs) and

as such is reset back to the

installation state on each boot.

Belongs to user elux.

No security critical information

should be saved here, since it's

readable/writeable by everyone.

Unicon epkg User Manual

18

/lib <symlink to

/usr/lib>

No. Use /usr/lib

/lib64 <symlink to

/usr/lib64>

No. Use /usr/lib64

/lost+found broken filesystem

data

No

/media mount points for

removable media

No

/mnt mount points for

other filesystems

No

/opt Add-on

application

software

No. Avoid if possible.

Instead, use /usr/bin,

/usr/lib/ etc.\

/opt is used on

distributions such as

Ubuntu to install

packages outside the

Ubuntu ecosystem. On

eLux, only installation

through eLux/Scout is

possible. As such there

is no reason to deploy

software to /opt.

This directory is part of an

overlay filesystem (tmpfs) and

as such is reset back to the

installation state on each boot.

This also means all files put

here can be changed at run-

time.

If binaries/configuration/... is put

here with too broad access

rights, security issues might

arise.

Unicon epkg User Manual

19

/proc process/kernel

special files

No. Populated

automatically by

operating system.

/root home directory

for the root user

No.

Use /etc/ for global

static configuration or

/setup/ for changing

configuration.

This directory is part of an

overlay filesystem (tmpfs) and

as such is reset back to the

installation state on each boot.

/run Run-time variable

data

No. Populated

automatically by

operating system.

Part of a tmpfs, reset to empty

on boot.

/sbin <symlink to

/usr/sbin>

No. Use /usr/sbin

/setup Persistent, but

changeable

configuration

data

Yes. Configuration

goes here.

/setup is where all configuration

that should be kept on reboot is

put.

● applications can store

their configuration files

or other data meant to

be accessible across

reboots

● space on /setup is

limited, so it should only

be used for pure

configuration data

● log files or even binaries

should not be stored on

/setup

● for applications with hard

coded configuration

paths we usually put the

configuration here and

create a symlink at the

hard coded path

Unicon epkg User Manual

20

/sys contains

information about

devices, drivers,

and some kernel

features

No. Populated

automatically by

operating system.

/tmp temporary files No, temporary files are

cleared with every

reboot.

Of course it is

acceptable for your

applications to use /tmp

for storing temporary

files. But do not install

files to /tmp.

Part of a tmpfs, reset to empty

on boot.

Historically (pre-overlay) a lot of

log files were put here, but this

is slowly changed to put log files

in the correct location /var/log.

You might still find some

application logs here for now.

/update files for the eLux

update

No. Used only by eLux

update mechanism.

/usr read only data Not directly, use

subdirectories.

/usr/bin binaries for all

users

Yes.

Store executables ran

as user elux (user

context) here.

/usr/lib

/usr/lib64

system libraries Yes.

Store shared libraries

here.

Unicon epkg User Manual

21

/usr/libexec special binaries

that are not

intended to be

executed directly

Yes.

For example, store init

scripts invoked through

some systemd service

here.

/usr/sbin

Yes.

Store executables only

ran as user root here.

/usr/setup

Yes. Default/factory

configuration goes

here.

on each boot the configuration

is synchronized from /usr/setup

to /setup

● if a file exists on

/usr/setup but not on

/setup, it is copied

(folders are created)

● this happens for

example after factory

resets or after updates

to copy configuration

from newly installed

packages

● configuration within

/setup is never

overwritten by

configuration from

/usr/setup

/usr/share Shared data, like

application icons,

translations, ..

Yes

/usr/share/

elux-init

scripts executed

by systemd

services

Yes Service start scripts for systemd

services should be put here

Unicon epkg User Manual

22

/var variable files: files

whose content is

expected to

continually

change during

normal operation

of the system,

such as logs,

spool files, ...

Usually not.

Of course it is

acceptable for your

applications to use /var

for storing temporary

files.

This directory is part of an

overlay filesystem (tmpfs) and

as such is reset back to the

installation state on each boot.

Some log files are still in /tmp.

All newly added log files should

be put in /var/log

General tips for the file system

● Be as restrictive as possible with file permissions: e.g. a file with 777 could be

changed or substituted by an attacker.

● Try to keep log files to /var/log/. If your package runs software as user elux (not root),

you can create a subdirectory in /var/log/ as part of your package.

● (Legacy) in RP6 the chattr +a flag (only appending is allowed) is set on all files as an

additional protection. This is not the case in eLux 7.

Development Only: Mounting File System as Read-Write

Usually, the eLux file system is mounted as read-only. As such, no permanent changes to

the file system (think /usr/bin/, /usr/lib/ etc) are possible.

If you have root user access to an eLux machine, you can temporary mount the file system

as read-write. To do this, run

Adding additional files

fs open

as user root. Once you are done with these changes, you can relinquish the write

permissions again by calling

Adding additional files

fs close

Please be aware that once fs open has been called, the system may not be in a defined

state anymore. In particular, consider the following:

● Writes to any file/directory covered by an overlay can lead to undefined behavior (see

kernel documentation).

https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html

Unicon epkg User Manual

23

● Changes to the overlay will not persist after a reboot. For example, since /etc/ is part

of the overlay file system, changes to /etc/ (even with fs open) are not persistent. Only

packages may install contents to /etc/.

This means that fs open may not be done in production. In particular, you should not use it

in any scripts shipped by your package.

Starting Services at Boot / systemd Services

eLux uses systemd for service management which means that staring programs at boot time

is as easy as adding a systemd service.

Warning: eLux does not provide a SysV compatibility layer so scripts used in .service files

must not be put in /etc/init.d/ or they will not be started properly

Startup scripts can either be placed in /usr/share/elux-init or if they are expected to be

executed manually as well in /usr/sbin.

Offical systemd service documentation can be found at freedesktop.org

Example

A simple service which starts after eluxd (i.e. after core eLux OS has booted) might look like

this

/usr/lib/systemd/system/example.service

[Unit]

Description=An example service

After=eluxd.service

[Service]

Type=simple

ExecStart=/usr/share/elux-init/example

[Install]

WantedBy=multi-user.target

To enable/disable the service during package installation/removal, 2 scriptlets should be

added to the FPM.

example_fpm.postInst

#!/bin/bash

systemctl --quiet enable example

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html

Unicon epkg User Manual

24

example_fpm.preUninst

#!/bin/bash

if [[$1 -ne 0]]; then

 exit 0

fi

systemctl --quiet disable example

If you do not include above *.postInst and *.preUninst scriptlets, your service will not be

enabled after installation.

Starting User Programs At Login

Currently all user programs are started via numbered start scripts within

/usr/share/X11/login.d/.

There are also the folders /usr/share/X11/logout.d which is executed at logout and

/usr/share/X11/prepare.d which is executed to prepare the X server start

The scripts are sourced during login, meaning they should not be executable and using exit

will abort the login process. If a script should stop processing use the shell built-in return.

Please note that return codes are not checked in the callers.

To get a better understanding on how to write such a script and how to name it, existing

scripts should be considered.

Setting Correct Dependencies

Most software one wants to package requires additional dependencies - usually in the form

of shared libraries. As explained later in Collisions and corrupts=, no two EPM/FPM

packages should provide the same file, so it's essential to set correct dependencies instead

of re-packaging a library.

To discover what libraries are required you can use a command like readelf -d /path/to/binary |

grep NEEDED (be careful, ldd resolves libraries transitively and will show more than you

need)

Then the package providing a certain file or library has to be found. There are two

approaches to this:

● search across all existing packages for the file name to find it within a .install meta

file or search for the debian package name to find it within a .debs or .thirdparty meta

file, but be aware that

○ files not packaged by us can - obviously - not be found this way

Unicon epkg User Manual

25

○ files might not be listed explicitly in the .install file, but with a glob, e.g.

/usr/lib/* (that's one reason to avoid globs if possible)

● create an IDF with all EPM available or a subset of probable EPM/FPM (e.g. the

systemlibs EPM contains many libraries) and use eluxbuild to find the provider of a file

o files not packaged in an available EPM/FPM cannot be found this way

either

○ eluxbuild is part of the eluxbuild FPM within the devel EPM

○ eluxbuild has trouble with files in symlinked directories

Once the correct EPM/FPM is identified it should be added to requires= in the FPM. Usually

the EPM name and the FPM name should be added separated by a pipe I character. This

helps administrators with finding missing dependencies.

If the file cannot be found it can either be added to an existing library or shipped in the

EPM/FPM that needs it. It's a judgment call what to prefer, but as a rule of thumb all

moderately common libraries should be packaged in an EPM like systemlibs.

Example

In this example, assume that we wish to package some application with libpoppler as a

requried dependency:

elux> ls /usr/lib/x86_64-linux-gnu/libpoppler* -l

lrwxrwxrwx 1 elux root 25 Feb 10 11:48 /usr/lib/x86_64-linux-gnu/libpoppler-glib.so.8 ->

libpoppler-glib.so.8.23.0

-rw-r--r-- 1 elux root 415888 Jan 14 17:14 /usr/lib/x86_64-linux-gnu/libpoppler-glib.so.8.23.0

lrwxrwxrwx 1 elux root 21 Feb 10 11:48 /usr/lib/x86_64-linux-gnu/libpoppler.so.118 ->

libpoppler.so.118.0.0

-rw-r--r-- 1 elux root 3511008 Jan 14 17:14 /usr/lib/x86_64-linux-gnu/libpoppler.so.118.0.0

elux> eluxbuild -qf /usr/lib/x86_64-linux-gnu/libpoppler.so.118

libpoppler-22.02.0.7.2503.0-1

warning: /bin is a symlink to /usr/bin, so:

which eluxbuild

/bin/eluxbuild

elux> eluxbuild -qf /bin/eluxbuild

file /bin/eluxbuild is not owned by any package

but

elux> eluxbuild -qf /usr/bin/eluxbuild

eluxbuild-7.2503.0-1

Unicon epkg User Manual

26

epkg: Usage, Configuration, Installation

Scripts

This section provides a more detailed reference on epkg and the files that make up an eLux

package (e.g. input/ebkepm).

Configuration for epkg

Configuration for epkg can be set in /etc/epkg/settings.ini.

default /etc/epkg/settings.ini

[Signing]

keyPath=/etc/epkg/code-signing-key.pem

certificatePath=/etc/epkg/code-signing-cert.pem

[Global]

DevelopmentContainer=

Blocksize=1024

SizeOffsetInPercent=2

UniconCopyright=Copyright (C) %currentYear% Unicon GmbH. All rights reserved.

Proxy=

[WebElias]

Url=

● Signing Section: the option keyPath and certificatePath in the Signing section

configure the certificate key pair used to create signatures either when building

packages or when explicitly calling epkg Sign

● Global → DevelopmentContainer: Absolute path to the directory serving as

container when calling epkg Install

● Global → Blocksize: Size of a block on the filesystem in bytes. Shipping default is

1024. DO NOT CHANGE.

● Global → SizeOffsetInPercent: Percentage added to the calculated size of a

package. Epkg cannot completely reliably determine the size of a package after

installation. Therefore this safety margin is added. Shipping default is 2. DO NOT

CHANGE. (see <fpmName>.size)

● Global → UniconCopyright: String that replaces %UNICON% parameter in

package description, usually used for copyright= or vendor= in input/ebkepm

● Global → Proxy: Proxy url that is used when downloading resources specified with

an http(s) url in .thirdparty files

● WebElias → Url: Configures the webelias url used when calling epkg Upload

Unicon epkg User Manual

27

Ways to Provide Files

When building packages with epkg there are 3 ways to provide files that should be

packaged:

● the input/ folder - files put here are directly included in the package, no further action

required

● a .thirdparty meta file - contains paths to (archive) files containing files to package.

(archive) files

● a .debs meta file - contains names of debian packages to pull from a debian

repository

The latter two ways also require a .install file to list what files to take from that archive/debian

package and where to put them on the file system.

Collisions and corrupts=

File collisions across several FPM packages should be avoided. In particular, two FPMs

should not provide the same file.

If there is no other way than to overwrite a file the field corrupts= can be used in the FPM

overwriting a file referencing the name of the FPM the file originally belongs to. If a package

corrupting another package is uninstalled, the corrupted package will be re-installed.

Due to how the eLux installation progress works, a package marked with

PKGOPT_RECOVERY must not be corrupted and must not corrupt other packages.

For example, currently these packages have the option set:

● BaseOS → minsystem

● BaseOs → plymouth

● BaseOs → libncurses

Scripts Executed During Package Build

There are currently two ways to execute scripts at build time of a package. The epm global

elux/preCommands script and per FPM <fpm_name>.postCommands script. These scripts

are executed with /bin/sh -c and know the special variable %root%. These scripts are usually

used to create symlinks, adjust file permissions or mangle files in some special way (e.g. in

the kernel epm, kernel modules are compressed at epm build time to save space). It is

usually best to do these things at package build time because then the package database in

the system will have all the information and there won't be any surprises (like space

constraints that come from .postInst script creating additional files that could have been

caught before).

Unicon epkg User Manual

28

elux/preCommands: This script is executed after all packages/archives from .debs and

.thirdparty are extracted to tmp/ and before files and folders are copied to the package tree in

output/ . The special variable %root% points to that tmp/ folder.

<fpm_name>.postCommands: This script is executed after all files from an FPM are

copied to the file tree in output/ . The special variable %root% points to the FPM file tree,

./output/<epm_name>/<fpm_name> .

Scripts executed before/during/after Installation

Since debian packages are just extracted using dpkg -x any control information (like postinst

or preinst scripts) is lost during packaging. This means that if a package does important

things, like setting the setuid flag on binaries in their postinst routines, this operation will be

lost.

When working with debian packages dpkg-deb -e <package.deb> can be used to extract a

package's control files to manually inspect them and decide if similar operations need to be

performed in a postInst or postCommands script

The .preInst, .postInst, .preUninst and .postUninst hook scripts are a bit special and need

extra care to work properly. The most important things first:

● If in doubt, always prefer a solution using .postCommands to installation scriptlets for

one simple reason: everything done as a postCommand is part of the package. This

includes installation size calculations, registering files in the package database,

solving file corruptions on re-installation, and so on. So if there is any way to get

away with not having a pre/post-inst/uninst scriptlet do it

● Not all output from scripts will be visible in the installation logs, so please take extra

care to verify the results and don't rely on "I don't see any errors so it works"

○ RP6: set "InstallLogLevel" to see stdout/stderr in eluxman.log from script

execution even if the overall installation succeeds.

○ elux7: all stdout/stderr output should always end up in the installation log files

(update.*.log, installation.log, migration.log)

● Currently you can expect any shell options (e.g. set -o errexit) to propagate to all

other scripts executed, so don't use them or unset anything you set on exit

○ it's harder to properly use set -o errexit : you need to use set -o errexit,errtrace

and can then use a trap to remove those flags on quit

○ (the propagation of all shell options only happens with the terminal.ini

parameter Development=true, but you can't rely on that not being set)

● depending on when in the overall install process your script is executed, don't expect

the system to be fully functional: e.g. a script for minsystem cannot expect any

applications or libraries from any other FPM to be present

Unicon epkg User Manual

29

Determining Final Installation State

epkg was originally forked from rpm . Please note, that this behavior was reconstructed from

current RPM documentation, while our RPM was forked ~25 years ago and it's unclear if it

was ever updated since then.

If you want to perform certain actions only if a package gets uninstalled and not reinstalled

you can check the first argument `$1` in any of the post/pre Inst/Uninst scripts: It contains

the number of packages that will be left on the system when the action completes, so for

example if a package is uninstalled $1 will be 0 in the preUninst and postUninst scripts. If the

package is up- or downgraded it will be first uninstalled and then reinstalled, so $1 should be

!= 0 in all scripts. Since there can be cases where $1 is 2, you should always check inequality

to 0 and not equality to 1.

The following table shows what value for $1 a certain script receives in which cases

install upgrade uninstall

.preInst $1 == 1 $1 == 2 not executed

.postInst $1 == 1 $1 == 2 not executed

.preUninst not

executed

$1 == 1 $1 == 0

.postUninst not

executed

$1 == 1 $1 == 0

Special #include

There is a special feature to include scripts in your scripts

#include <path/to/somescript>

and epkg will replace the line with the script that is specified there. This works like the C

Preprocessor.

This feature works only in the .preInst, .postInst, .preUninst and .postUninst hook scripts, but

is not usable for .preCommands and .postCommands hook scripts.

https://rpm.org/
https://rpm.org/

Unicon epkg User Manual

30

Using Debian Repositories

To pull debian packages from a repository epkg needs to know which repository to use.

Repositories are defined in /usr/share/unicon/suiteCPP.ini in a format similar to the one in

/etc/apt/sources.list.

Each repository has an additional name field which needs to be given to epkg --

repositoryName=<name> to use the repository.

Each repository definition consists of:

● a section header starting with source and ending with a number not used in any other

repository definition

● a name= field with a unique name

● one or more sourceX= fields, where X is a number unique to this repository and the

value is a repository URL line

○ an URL line consists of a priority, the archive type (usually deb), a repository

URL, a distribution and one or more components

○ URL lines can contain extra specifiers in [] just like a debian/ubuntu

sources.list entry (see examples)

Example

suiteCPP.ini

valid

[source1]

name=jammy-main

source1=501 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy main

valid

[source2]

name=jammy-all

source1=501 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy main restricted universe

source2=502 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy multiverse

invalid, [source1] already exists

[source1]

name=jammy-universe

source1=501 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy universe

valid, but broken, source1 used twice. The first source

[source3]

name=jammy-all2

Unicon epkg User Manual

31

source1=501 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy main

source1=502 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy multiverse restricted universe

valid, but broken, name already taken. The first repository with this name will be used by epkg

[source4]

name=jammy-main

source1=501 deb [signed-by=/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg]

http://de.archive.ubuntu.com/ubuntu/ jammy main universe

Bugs/Gotchas

Extra care has to be taken when editing the suiteCPP.ini, since epkg does not verify entries.

As a result misconfiguration may manifest in the following ways:

● an error like "epkg: error: Unknown repository: ..."

● an error from apt (e.g. "Malformed entry 2 in list file...")

● packages are not found

● entries are silently ignored and different package versions are found from another

entry

The last one is probably the most severe one and may break packages.

Package Change Detection and Version Auto-Increment

During package builds, epkg is able to detect which parts of a FPM have changed. epkg only

rebuilds those changed FPM. Thus it's very common that specific FPM of an EPM have a

higher release number than other FPM.

To do this, epkg records checksums of all meta files (within elux/), files in the input/ folder

and archives/packages listed in .debs/.thirdparty in each FPM's .md5sum files. These

checksum files should be checked in to version control such that subsequent test or release

builds can re-calculate all checksums and compare to those saved values.

Converting EPM packages from eLux RP6 to eLux 7

1. Package Sources / Dependencies

1. if you package files from Ubuntu, switch your package sources from Ubuntu

16.04/18.04 (Xenial/Bionic) to Ubuntu 22.04 (Jammy)

2. a lot of upstream packages were restructured and it's very likely that you

need to adjust the .debs/.install files of your EPM

3. within eLux 7 packages have also changed. It's very likely that libraries that

weren't available before are now part of a FPM within the systemlibs EPM or

even part of BaseOs. See Setting Correct Dependencies

2. File input/ebkepm

Unicon epkg User Manual

32

1. change "containers=1024" to 2048 (multiple times)

2. drop any versioned dependency on like in

"requires=%ELUX_BASEREQ|BaseOs >= 6.2104.0" or "requires=BaseOS >=

6.6" or 'requires=Foo>=1.2.3"

3. drop any package conflicts like "conflicts=biostools<=1.3.2"

3. Package Contents

1. move start scripts for service files from /etc/init.d/ to /usr/share/elux-init/ (RP6

patched systemd to allow scripts in /etc/init.d/. For security reasons eLux7

uses an unchanged version of systemd)

2. remove all and every chattr call in scripts in input/ and in all

elux/*.postCommands, elux/*.preInst and elux/*.preUninst files

3. remove all kill/systemctl stop/systemctl start/systemctl daemon-reload/ calls in

.preInst/.preUninst files

4. Consider removing symlinks pointing to /tmp (see eLux Filesystem Layout

101: there are several places which are writable at runtime in eLux 7 now)

5. if your old package made any version checks, e.g. checking against strings

like RP6 remove those, too

4. build locally for container elux7: epkg Build --container elux7 --releaseType test

1. fix any build errors that occur

epkg: Reference

Files

Which meta files are supported and what do they do. Empty files are not needed and can be

safely removed.

Global

Global files

input/ebkepm

This file contains the metadata of an EPM and its FPMs. The section for the EPM starts with

[EPM], the sections for FPM's with [FPMx] where x is number >= 1, unique within the EPM.

Section Name Default Supported values Description

EPM category Category of the package, see EPM

Categories

Unicon epkg User Manual

33

EPM,

FPM

conflicts |-separated list of

package names

List of package names conflicting

with this package

Make sure to use the correct

EPM/FPM here: e.g. when

overwriting a file from an EPM, list

the exact FPM that file is shipped

with (most of the time the EPM

contains no files, so using the EPM

here makes no sense)

EPM,

FPM

containers Bit field specifying the containers this

package is compatible with (e.g. 1024

= rp6_x64, 2048 = elux7). If no valid

containers are specified (e.g.

containers=0), this EPM/FPM will be

skipped during build

EPM,

FPM

copyright Name of copyright holder of the

package

EPM,

FPM

corrupts Comma-separated

list of package

names

Packages corrupted by this package

(e.g. overwritten config files) which

have to be reinstalled after this

package is removed

Listing packages with installoption

PKGOPT_RECOVERY (0x20) will

break the installation and should not

be done.

(it leads to a plethora of issues like

they will be installed/removed before

chrooting, etc. pp)

Unicon epkg User Manual

34

EPM,

FPM

descriptio

n

 A description of the package's

purpose/content. About 1-3

sentences.

This field is shown in ELIAS when

you select the corresponding EPM or

FPM in the package list in the

"package information" area below the

package list, alongside other meta

information of the package.

Please follow the additional guidance

given in the EPM/FPM Naming

Convention.

FPM files

LEGACY

 Removed

Unicon epkg User Manual

35

FPM hasGzArc

hive

hasXzArc

hive

hasXzArc

hiveWithG

zSuffix

 hasGzArchive: false or true; if true, a

gzip-ed cpio archive will be created

for this FPM. The suffix will be .gz .

Create file trees to be included below

input/(FPM-package-

name)_gzArchive and/or input/(FPM-

package-

name)_gzArchive_(architecture), e.g.

from baseos EPM: install_gzArchive

and install_gzArchive. Specify debs,

dirs, excludes, install, etc. for the

archive below the elux directory as

(FPM-package-

name)_gzArchive.debs, (FPM-

package-name)_gzArchive.dirs, etc.,

e.g installrp_gzArchive.debs,

installrp_gzArchive.dirs .

hasXzArchive: instead of gzip, use xz

for compression. The suffix of the

created xz-compressed cpio archive

will be .xz . Use xzArchive instead of

gzArchive in input and elux

directories.

hasXzArchiveWithGzSuffix: like with

hasXzArchive, use xz for

compression, but the suffix of the

created xz-compressed cpio archive

will be .gz . Use

xzArchiveWithGzSuffix instead of

gzArchive in input and elux

directories. This option is necessary

for tools like Elias which expect a .gz

suffix.

FPM includedM

etaPackag

es

LEGACY

 To be removed

Unicon epkg User Manual

36

FPM includedM

etaPackag

esLicence

s

LEGACY

 To be removed

FPM installoptio

n

 See eLux Software Package Format -

Install Options

Warning: Setting

PKGOPT_RECOVERY (0x20) here

means that the package

installation/removal is performed

before chrooting during installation.

This means that the package should

not have a preUninst or postInst

script (or those scripts need to be

created taking into account that they

run in a ramdisk not the final system;

advice: just don't do it)

EPM,

FPM

licence

LEGACY

 To be removed

Unicon epkg User Manual

37

EPM,

FPM

majorVersi

on

 Sets the major elux version (e.g.:

7.2404.0) which can be used in the

version field as a variable (prefixed

with "epm." or "fpmX."), e.g.

"version=1.0.0.%fpm8.majorVersion

%"

The target majorVersion can be set

via command line parameter --

majorVersion and will be used for

automatic version bumping in a

release build. The algorithm is like

this:

■ Is the package skipped? If

yes, do nothing, else

continue.

■ Evaluate the current version

field, possibly expanding the

variable if used

■ Set majorVersion field (and its

corresponding variable) to the

version given via command

line

■ Evaluate the version field

again

■ If it changed: reset release=0

■ If autoincrement is enabled

then release will be

incremented to 1

Unicon epkg User Manual

38

EPM,

FPM

name Package's name

● This field is used to construct

the EPM/FPM file name

● Allowed characters: Only

letters, digits and underscore,

must begin with a letter

Uppercase letters should be

avoided, use them for

abbreviations - do not use

them for CamelCase, use

snake_case to separate

words instead.

● for FPM names the EPM

name should be prefixed to

avoid collisions in the file

system (e.g. use firefox_base,

xorg_base)

Please follow the additional guidance

given in the EPM/FPM Naming

Convention.

EPM pkgoption See eLux Software Package Format,

chapter "EPM Options".

EPM,

FPM

postinstall

LEGACY

 To be removed

EPM,

FPM

postuninst

all

LEGACY

 To be removed

EPM,

FPM

preinstall

LEGACY

 To be removed

Unicon epkg User Manual

39

EPM,

FPM

preuninsta

ll

LEGACY

 To be removed

EPM,

FPM

provides SPACE-separated

list of package

names

List of package names being

exported by this package. Only used

if more than the package's name

shall be exported.

EPM,

FPM

release non-negative

integer

Release number, will be added to

version. If V is the version and R the

release, then V-R will be the full

version string.

In 99.9% cases the release will be

autoincremented by the epkg due to

a change in the EPM/FPM, so under

normal circumstances this field

should never be touched to

increment it.

When increasing/changing the

version of a package, this field should

always be set to 0.

CAVEAT: This should almost never

happen, since we usually change a

FPM, which automatically bumps the

EPM's and FPM's release, but when

increasing the EPM's release number

then be sure to increase the release

numbers of the contained FPM's, too!

Weird errors may arise otherwise.

EPM,

FPM

requires |-separated list of

package names

List of package names required by

this package. For each package a

version restriction may be specified,

like

...|BaseOS >= 6.8.0|...

Unicon epkg User Manual

40

FPM size (wip)

FPM sort non-negative

integer, non-zero

Order how Elias presents that FPM.

Usually you'd want to have the same

number here as the FPM's number,

like [FPM17] … sort=17. Doing it

differently may has its applications,

but most likely leads to more

confusion and trouble than

necessary.

EPM,

FPM

summary A few words describing the package's

content.

This field is shown in ELIAS when

you select the corresponding EPM or

FPM in the package list in the

"package information" area below the

package list, alongside other meta

information of the package.

Please follow the additional guidance

given in the EPM/FPM Naming

Convention.

EPM,

FPM

vendor The package vendor. In most cases

we use %UNICON% which will be

substituted by the value of

UniconCopyright from

/etc/epkg/settings.ini

EPM,

FPM

version Version of this package, see release

Unicon epkg User Manual

41

elux/control

This file configures the behaviour of epkg for this package

Format: ini-File

Section Name Default Supporte

d values

Description

Global architectures Main

architecture of

eluxVersion

i386 (<

eLux 7)

amd64 (>=

RP6_X64)

Space separated list of

architectures the package

should be built for.

Will default to the first supported

architecture of a container if left

empty.

If unsure: leave empty.

Global checkMissing

Files

false true, false If true epkg will check if a file in

any source package is not

included in any FPM. If files

should be excluded intentionally

see elux/allowedMissingFiles

elux/version INTERNAL

This file defines the Format version of the meta data.

elux/variables

This file defines variables which can be used in all other meta files. Each line contains a

variable definition in the format: <name>=<value>. Variables can be referenced in other files

with %<name>%.

Some of the key/value items of ebkepm are available as variables: The keys: name,

majorVersion, version, release, summary, description are available with prefix "epm." or

"fpmX.".

Examples

In section "fpm8" the key "name" is "foobar", then "%fpm8.name%" expands to "foobar".

Unicon epkg User Manual

42

Bugs

"Nested" variables like

folder=/home/build

installer_bin=%folder%/installer.sh

can only be properly resolved if all variables are used explicitly in a certain context. If

%folder% is not used e.g. in a postInst script, %installer_bin% will resolve to '/installer.sh'

elux/stripExcludes

Each line contains a perl regular expression of files which should be excluded for stripping.

elux/allowedMissingFiles

Each line contains a perl regular expression of files which are allowed to be missing, missing

means they are part of the source package but not of any fpm.

elux/preCommands

This file contains commands which should be executed before the files are copied to the

package tree structure. The variable %root% can be used to reference the tmp/ directory.

This file is executed with "sh -c".

elux/<epmName>_epm.md5 INTERNAL

This file contains all md5 checksums of data used by the epm. It is needed to check if the

epm has changed.

elux/<epmName>_epm.preInst

Script which will be executed before the package is installed. See scripts for additional

information and features.

elux/<epmName>_epm.postInst

Script which will be executed after the package is installed. See scripts for additional

information and features.

elux/<epmName>_epm.preUninst

Script which will be executed before the package is uninstalled. See scripts for additional

information and features.

elux/<epmName>_epm.postUninst

Script which will be executed after the package is uninstalled. See scripts for additional

information and features.

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Unicon epkg User Manual

43

Per FPM

Files that can/should exist for every FPM

elux/<fpmName>.debs

This file contains all debian packages which provide files included in this FPM. Each line

contains the name of the debian package. During building it is tried to parse the licence

information included in the debian package if it fails a warning is displayed and the licence

needs to be entered manually. This can be done by adding a new line directly below the

name of the debian package with the following content: "Licence: <Licence1>,<Licence2>".

Example

xauth
Licence: MIT
xfonts-utils
Licence: BSD-2-Clause,MIT

elux/<fpmName>.dirs

Each line in this file contains a directory which is created on installation.

Only use is to to create empty directories.

elux/<fpmName>.excludes

Each line contains a perl regular expression of files which should be excluded for packaging.

This can be useful if wildcards are used in elux/<fpmName>.install.

The path against which is checked from install will always begin with a '/'

elux/<fpmName>.install

This file contains all files which will be included in the fpm. Each line contains a string in one

of the following formats:

● <destinationPath>

● <sourcePath> -> <destinationPath>

The first format can be used if source and destination are the same. The <sourcePath> can

contain * as wildcard. The <sourcePath> is relative to tmp/ and the <destinationPath> is

relative to the package tree root. It is possible to specify the rights of the destination file if no

rights are specified the destination file will have the same rights as the source file. Rights

can be specified by adding a line beginning with "Rights: ". The format is the same as with

chmod.

https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Unicon epkg User Manual

44

Example

usr/lib/test.so.2
Rights: 644

elux/<fpmName>.md5 INTERNAL

This file contains all md5 checksums of data used by the fpm. It is needed to check if the

fpm has changed.

elux/<fpmName>.postCommands

This file contains commands which should be executed after the files are copied to the

package tree structure. The variable %root% can be used to reference the package tree

root.

This file is executed with "sh -c", but a shebang for another shell can be used within the file.

elux/<fpmName>.preInst

Script which will be executed before the package is installed. See scripts for additional

information and features.

This script may not be combined with eluxman --root <somedir> ... because <somedir> will

not be passed as root for the script in librpm/libepm.

elux/<fpmName>.postInst

Script which will be executed after the package is installed. See scripts for additional

information and features.

elux/<fpmName>.preUninst

Script which will be executed before the package is uninstalled. See scripts for additional

information and features.

elux/<fpmName>.postUninst

Script which will be executed after the package is uninstalled. See scripts for additional

information and features.

elux/<fpmName>.size INTERNAL

Contains the uncompressed and compressed sizes of the fpm. The uncompressed size is

automatically calculated during build or by running "epkg Size --calculate".

The compressed size needs to be obtained from the eluxman log. This can be done with

"epkg Size --fromEluxManLog <pathToEluxManLog>". Current eLux versions do not use

compressed files.

Unicon epkg User Manual

45

Format: ini-file

Section Name Default Supporte

d values

Description

SizeInfo Compressed

Files

0 any

number

LEGACY Number of compressed

files

SizeInfo Compressed

Size

0 any

number

LEGACY Size in kilobytes on a

filesystem with file compression

support

SizeInfo Compressed

Version

 any

version

string

Version of the package in

eluxman.log which was used to get

the size from

SizeInfo Uncompress

edFiles

0 any

number

Number of uncompressed files

SizeInfo Uncompress

edSize

0 any

number

Uncompressed size in kilobytes

Size calculation uses a configurable offset: Each FPM's size will be increased by ((size /

100) + 0.5) * SizeOffsetInPercent (/etc/epkg/settings.ini). The offset is currently configured

to '2'.

The problem with this approach is that it checks FPM sizes in isolation and target devices

might lead to different sizes depending on inode usage in folders like /usr/lib/* or /etc. It

seems that we managed to be on the safe side with those 2% cushion, but in the end we

"waste space". Hopefully a few MB of space won't be as important for future hardware/eLux

versions.

elux/<fpmName>.thirdparty

This file contains all thirdparty packages which provide files included in this FPM. Each line

contains the path to the thirdparty package followed by a line which contains the licence in

the following format: "Licence: <Licence1>,<Licence2>". A thirdparty package can also be a

http or https URL it will than be downloaded on every build of the package.

Unicon epkg User Manual

46

It is possible to extract to a specific folder by using "-> <path>". The path is relative to the

tmp folder. Options are specified by adding a line beginning with "Options: ". Options is a

comma separated list of the following options:

● NoExtract? - Do not try to extract the files just copy it to the tmp folder

Supported extensions:

● .zip

● .tar.*

● .tar

● .tgz

● .rpm

● .deb

● .xpi

● .bz2

● .bin (this is needed for java 1.6 and works only for java 1.6)

Example

/home/mirror/import/mozilla/ESR//38.5.2esr/firefox.tar.bz2
Licence: MPL-2.0

/home/storage/Development/public/ThirdParty/Fujitsu/deskflash/1_70_0049/biosset-1.70-elux.tgz -> deskflash
Licence: Fujitsu Technology Solutions

Bugs

There is currently an open bug for the extract-archive-to-specific-destination-feature.

EPM Categories

Categories can be used in ELIAS 18 to filter EPM packages.

At the moment following EPM Categories exist

Category Use case Examples

Application Applications used

by eLux users, e.g.

Desktop

Applications,

Browsers, …

ica, citrix_extensions, vmwareviewclient,

eluxrdp, firefox, chromium

http://wiki.unicon-ka.de/twiki/bin/edit/UniCon/NoExtract?topicparent=UniCon.Epkg

Unicon epkg User Manual

47

System System packages baseos, xorg, pulseaudio, systemlibs, jre, perl,

pulseaudio, kernel

Network Proxy, VPN squid, avahi, dynamicproxy, dyndns, netdrive,

networkaccesscontrol

Miscellaneous Custom packages

Security SmartCard

Middelware, VPN

socutions

cisco_secure_client, userauth, securitylibs,

pcsc_lite, openldap

Multimedia Audio, Video gstreamer, fluendosw, videolibs, audiolibs

Driver Support for new

hardware

wacom, wlan, wlandrivers, baseprinter

Communication VoIP, Unified

Communication

citrix_hdxrtme, zoom

Utility

bios_tools, uefifwupd

Bits and Pieces

Testing Versions

Since epkg Version 1.1.5 the testing versions default to 'testing' (previously: '9999').

Allowed values for the --testVersion parameter are lower case letters or lower case letters

followed by a ~ and then numbers.

Examples:

● --testVersion=mytestbuild

● --testVersion=elux~178

Unicon epkg User Manual

48

The build server will correctly fill in these values according to the type of build (e.g. Testing

builds on master will be 'testing', bug/feature branch builds will be <project name>~<ticket

number>).

In general one should not need to locally build EPMs and copy them to the container, but if

you think you need this please make sure to use a --testVersion parameter that does not

clash with anything the build server does, like for example your account abbreviation and

maybe append your current ticket number, like --testVersion=sbr~6645

Feature Builds

In epkg version 22.04.911656.git668878a9 the flag --featureBuild was added, which can only

be used for testing builds (–-releaseType Test). When this flag is provided epkg sets

PKGOPT_FORCEUPDATE (see eLux Software Package Format) on all changed FPM.

This means these packages will always be updated and combined with the

CleanUpdatePartition parameter it allows developers to work on/with feature EPM more

efficiently.

Converting LEGACY

To convert a package tree in the new meta format the following commands need to be

executed:

epkg NewFrom --pkgTree=<path to package tree>

This will create all needed files under elux/ but they are empty.

 Fill *.thirdparty and *.debs with the input data

epkg ConvertFrom --pkgTree=<path to package tree>

 This will fill the *.install and *.dirs meta files and create needed folders under input/

Multilib LEGACY

This feature has not been used for years and might not work as expected.

It is possible to build a package for multiple architectures.

At the moment the following architectures are supported: i386 and amd64. The architectures

can be specified in elux/control.

In order to build 32 and 64Bit packages from the same source the epkg tool was extended.

Those new files will be recognized:

Unicon epkg User Manual

49

Files

elux/multiLibExcludes

epkg checks if *.so or * under /lib and /usr/lib are copied to a multilib lib directory like

/lib/i386-linux-gnu or /usr/lib/i386-linux-gnu and if not it errors out. But some packages need

their modules to be placed directly in the lib dir and so the files contains a regexp per line to

exclude files from this check. The path against which the regexp is checked is relative to the

lib dir.

Example:

elux/pulseaudiobase.install:

usr/lib/pulse-8.0/*

elux/multiLibExcludes:

pulse-8\.0/.*

elux/<fpmName>.debs_<architecture>

This file is only used if the <architecture> matches the architecture of the package to be

built. So these debs are only included in the given <architecture>. This file is merged with

elux/<fpmName>.debs

elux/<fpmName>.dirs_<architecture>

This file is only used if the <architecture> matches the architecture of the package to be

build. So this dirs are only created in the given <architecture>. This file is merged with

elux/<fpmName>.dirs

elux/<fpmName>.install_<architecture>

This file is only used if the <architecture> matches the architecture of the package to be

built. So these files are only installed in the given <architecture>. This file is merged with

elux/<fpmName>.install

elux/<fpmName>.thirdparty_<architecture>

This file is only used if the <architecture> matches the architecture of the package to be

build. So these third party packages are only included in the given <architecture>. This file is

merged with elux/<fpmName>.thirdparty

input/<fpmName>_<architecture>

This folder is only used if the <architecture> matches the architecture of the package to be

built. So these input files are only included in the given <architecture>.

Unicon epkg User Manual

50

Variables

Variables can also be used in epm/fpm install scripts.

Variable

name

Scope Description

%archLibDir% Built-In variable the same as variables

from elux/variables

This will expand depending on

the architecture:

i386 → i386-linux-gnu

 amd64 → x86_64-linux-gnu

__ARCH__ Folder name under input This will expand depending on

the architecture:

i386 → i386-linux-gnu

 amd64 → x86_64-linux-gnu

